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Abstract

Microphysical theory has proven essential for explaining sea spray’s role in transferring heat

and moisture across the air–sea interface. But large-scale models of air–sea interaction, among

other applications, cannot afford full microphysical modules for computing spray droplet evolution

and, thus, how rapidly these droplets exchange heat and moisture with their environment.

Fortunately, because the temperature and radius of saline droplets evolve almost exponentially

when properly scaled, it is possible to approximate a droplet’s evolution with just four

microphysical endpoints: its equilibrium temperature, Teq; the e-folding time to reach that

temperature, sT; its equilibrium radius, req; and the e-folding time to reach that radius, sr.
Starting with microphysical theory, this paper derives quick approximation formulas for these

microphysical quantities. These approximations are capable of treating saline droplets with initial

radii between 0.5 and 500 Am that evolve under the following ambient conditions: initial droplet

temperatures and air temperatures between 0 and 40 8C, ambient relative humidities between 75%

and 99.5%, and initial droplet salinities between 1 and 40 psu.

Estimating Teq, sT, and sr requires only one-step calculations; finding req is done recursively

using Newton’s method. The approximations for Teq and sT are quite good when compared to

similar quantities derived from a full microphysical model; Teq is accurate to within 0.02 8C, and
sT is typically accurate to within 5%. The estimate for equilibrium radius req is also usually within
0169-8095/$ -

doi:10.1016/j.

T Tel.: +1 60

E-mail add
see front matter. Published by Elsevier B.V.

atmosres.2005.02.001

3 646 4436; fax: +1 603 646 4644.

ress: eandreas@crrel.usace.army.mil.



E.L Andreas / Atmospheric Research 75 (2005) 323–345324
5% of the radius simulated with the full microphysical model. Finally, the estimate of radius

e-folding time sr is accurate to within about 10% for typical oceanic conditions.

Published by Elsevier B.V.
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1. Introduction

Saline droplets do not evaporate to nothing. Unlike freshwater droplets from a lawn

sprinkler, for example, a saline droplet that is exposed to evaporating conditions can reach

a temperature and a radius at which it is still liquid but is in equilibrium with its

environment. Such an equilibrium state exists for typical sea spray droplets when the

relative humidity is 75% or higher (e.g., Twomey, 1953). For lower relative humidities, sea

spray droplets give up all their liquid but leave behind a sea-salt particle.

Microphysical theory, such as described in Pruppacher and Klett (1978), does well in

predicting the temperature and radius evolution of such saline droplets (El Golli et al.,

1974; Andreas, 1989, 1990, 1995; Pattison and Belcher, 1999). But a full microphysical

model to predict this evolution is complex and expensive to implement in larger models

that require information on these droplet microphysical endpoints (e.g., Fairall et al.,

1994; Edson et al., 1996; Kepert et al., 1999; Van Eijk et al., 2001; Andreas and

Emanuel, 2001). Simplifications are needed. Fitzgerald’s (1975) classic work shows

some of the approximations that are possible when the goal is to predict the equilibrium

radius of an aqueous solution droplet. Likewise, Andreas (1995, 1996) and Kepert

(1996) devise approximations to predict the equilibrium temperature of sea spray

droplets.

My particular reason for revisiting this topic, however, is because I want to make quick

estimates of how sea spray droplets contribute to the air–sea fluxes of heat and moisture.

Andreas (1992) parameterizes the sensible (Qs) and latent (QL) heat fluxes near the sea

surface that are mediated by all spray droplets with initial radius r0 as

Qs r0ð Þ ¼ qscps Ts � Teq
� �

1� exp � sf=sTð Þ½ � 4pr30
3

dF

dr0

� �
ð1:1Þ

and

QL r0ð Þ ¼ qsLv 1� r sfð Þ
r0

� �3
" #

4pr30
3

dF

dr0

� �
: ð1:2Þ

Andreas and DeCosmo (2002) integrate these quantities over all radii to get what they call

the bnominalQ spray fluxes. These are bnominalQ fluxes because they must be multiplied by

order-one tuning coefficients and combined to produce the actual spray fluxes.

In Eqs. (1.1) and (1.2), qs is the seawater density; cps, the specific heat of seawater at

constant pressure; Ts, the sea surface temperature and the initial temperature of the
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droplets; and Lv, the latent heat of vaporization. The quantity dF / dr0 is the spray

generation function, the rate at which droplets of radius r0 are produced at the sea surface

(Andreas, 2002). Hence, (4pr0
3 /3)dF / dr0 is the total volume flux at the sea surface of all

droplets with initial radius r0. The time scale sf in Eqs. (1.1) and (1.2), which is a function

of r0 and the wind speed, estimates the residence time of spray droplets in the air above the

sea surface (Andreas, 1992).

The remaining variables in Eqs. (1.1) and (1.2) are the microphysical quantities that are

my focus here. In Eq. (1.2), r(sf) is the spray droplet radius when the droplet re-enters the

sea; Andreas (1992) approximates this as

r sfð Þ ¼ req þ r0 � req
� �

exp � sf=srð Þ: ð1:3Þ

Here, req is the equilibrium radius of a droplet that started with radius r0, and sr is the

e-folding time to reach this radius. Similarly, in Eq. (1.1), Teq is the equilibrium

temperature of a droplet that started at radius r0 and temperature Ts, and sT is the e-folding
time to reach this temperature.

Andreas (1990) demonstrates that the temperature of a saline droplet at time t after its

formation, T(t), is well approximated by

T tð Þ � Teq

Ts � Teq
¼ exp � t=sTð Þ ð1:4Þ

for t /sT up to at least 2.8. Thus, sT derives easily from

T sTð Þ � Teq

Ts � Teq
¼ e�1: ð1:5Þ

Likewise, Eq. (1.3) derives from an approximate expression for the evolution of droplet

radius (Andreas, 1989),

r tð Þ � req

r0 � req
¼ exp � t=srð Þ; ð1:6Þ

which is accurate up to at least t /sr=1. Therefore, the time constant sr satisfies

r srð Þ � req

r0 � req
¼ e�1: ð1:7Þ

Fig. 1 depicts the temperature and radius evolution of a typical sea spray droplet and

identifies the microphysical quantities of interest, Teq, req, sT, and sr. These quantities

depend not only on initial radius r0 but also on the ambient conditions: air temperature

(Ta), sea surface temperature (Ts) and salinity (S), relative humidity (RH), and barometric

pressure.

Fig. 1 is based on calculations with a full microphysical model (i.e., Andreas, 1989,

1990, 1992). But in light of Eqs. (1.4) and (1.6), the microphysical endpoints Teq, req, sT,
and sr may be sufficient to characterize droplet evolution for some applications. Therefore,

here I develop approximation formulas for these microphysical quantities. Kepert (1996)

and Andreas (1996) have already given equations to predict Teq; I, nevertheless, repeat

these here for completeness and as a springboard for developing the other formulas.



Fig. 1. Typical temperature and radius evolution of a sea spray droplet that started with a radius r0 of 100 Am and

with temperature Ts of 20 8C. Air temperature (Ta) is 18 8C, relative humidity (RH) is 90%, initial droplet salinity

is 34 psu, and barometric pressure is 1000 mbar. The microphysical properties of this droplet, Teq, req, sT and sr,
are also labeled.
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Fitzgerald’s (1975) equations for req are appropriate for a host of solutes, including NaCl.

But for salt water, at least, his equations predict equilibrium radii that do not agree

especially well with predictions from my microphysical model. Hence, I describe a new

method to predict req. Finally, I also develop methods to predict sT and sr quickly.
2. Microphysical background

Pruppacher and Klett (1978) develop equations to predict the radius and temperature

evolution of aqueous solution droplets on the basis of microphysical theory. Andreas

(1989, 1990, 1992, 1995, 1996) adapted these equations to sea spray droplets with initial

radii ranging from 0.1 to 500 Am and assumed the solute was simply NaCl. Since I take

these equations as bases for the approximation formulas, I briefly review them.

2.1. Radius evolution

Pruppacher and Klett’s (1978, Eq. (13-28)) equation for the evolution of a saline droplet

with instantaneous radius r is (also Andreas, 1989)

dr

dt
¼ f � 1ð Þ � y½ �r�1

qsRTa

DwV Mwesat Tað Þ þ qsLv

kaVTa

LvMw

RTa
� 1

� � : ð2:1Þ

Here, f (=RH/100) is the fractional ambient relative humidity; Ta, the ambient air

temperature in Kelvin; R, the universal gas constant; Mw, the molecular weight of water;
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and esat(Ta), the saturation vapor pressure for a planar surface of pure water at temperature

Ta (e.g., Buck, 1981).

Also in Eq. (2.1), DwV and kaV are values of the usual molecular diffusivity for water

vapor in air (Dw) and the thermal conductivity of air (ka) that are modified for the

noncontinuum behavior of air and water vapor molecules around very small droplets.

Pruppacher and Klett (1978, Eqs. (13-13) and (13-20); also Andreas, 1995) give the

equations for DwV and kaV that I use here. Andreas (1989) shows that kaV is not much different

from ka when r0 is greater than 1 Am, but DwV is significantly smaller than Dw for r0 values

up to 100 Am.

Lastly in Eq. (2.1),

y ¼ 2Mwrs

RTaqwr
� mUsms Mw=Msð Þ

4pqsr
3=3ð Þ � ms

: ð2:2Þ

Here, qw is the density of pure water; ms, the mass of salt in the droplet (a constant); Ms,

the molecular weight of sodium chloride; and m, the number of ions into which a sodium

chloride molecule dissociates. Also in Eq. (2.2), rs is the surface tension of a flat water

surface with the same temperature and salinity as the droplet. I compute this from Eq.

(5-19) in Pruppacher and Klett (1978).

Finally in Eq. (2.2), Us is the practical osmotic coefficient. Andreas (1989) derives the

following functional form for this when the solute is NaCl:

Us ¼ 0:9270� 2:164� 10�2mþ 3:486� 10�2m2 � 5:956� 10�3m3

þ 3:911� 10�4m4: ð2:3Þ

Here, Us is dimensionless; and this expression is accurate for molality m between 0 and

6 mol kg�1, where

m ¼ ms

Mwmw

: ð2:4Þ

and mw is the mass of water in the droplet.

Note that if S is the surface salinity of the seawater (in psu), we can find ms for use in

Eqs. (2.2) and (2.4) from the definition of salinity,

s ¼ ms

mw0 þ ms

; ð2:5Þ

where mw0 is the initial mass of pure water in the droplet and s (=S / 1000) is the fractional

salinity. In turn,

ms

mw0

¼ s

1� s
: ð2:6Þ

Then, as an approximation for use in Eq. (2.2),

msg
4

3
pqwr

3
0

s

1� s

� �
: ð2:7Þ
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In practice, the variable y simply models how curvature (the Kelvin effect) and

dissolved salt affect the saturation vapor pressure at the surface of an aqueous solution

droplet. That is, if esat(T) is the saturation vapor pressure of a planar surface of pure water

at temperature T and if esat(T, r, m) is the saturation vapor pressure at the surface of a

droplet with temperature T, molality m, and radius r (e.g., Pruppacher and Klett, 1978, Eq.

(6-26a)),

esat T ; r;mð Þ ¼ esat Tð Þexp yð Þ: ð2:8Þ

2.2. Temperature evolution

I also start with Pruppacher and Klett’s (1978, Eq. (13-64)) equation for the temperature

evolution of a solution droplet:

d

dt
Ta � Tð Þ ¼ � 3

qscpsr
2
kaV Ta � Tð Þ þ LvDwV qv � qvrð Þ½ �: ð2:9Þ

Here, T is the instantaneous droplet temperature, and the droplet is assumed to be well

mixed (i.e., of uniform temperature; Andreas, 1990). Variable qv denotes water vapor

density such that qv is the ambient vapor density and, in my nomenclature, is

qv ¼
f Mwesat Tað Þ

RTa
; ð2:10Þ

which gives qv in kg m
�3 when esat is computed in Pascal. Likewise, qvr is the (saturation)

vapor density at the surface of the droplet,

qvr ¼
Mwesat Tð Þ

RT
exp yð Þ: ð2:11Þ

Eq. (2.9) simply states that a droplet changes temperature as a consequence of two

processes: heat diffusion and vapor diffusion at its surface.

Pruppacher and Klett (1978, Eqs. (13-50) and (13-64)) include ventilation coefficients

in their expressions for droplet evolution—my Eqs. (2.1) and (2.9) (cf. Fairall et al., 1994;

Edson and Fairall, 1994; Kepert et al., 1999). I ignore these terms here since they have not

seemed necessary when I compared model calculations with data (Andreas, 1990).

Furthermore, the small droplets that I consider respond almost immediately to turbulent

eddies (Andreas, 2004) and, therefore, rarely have a speed that differs much from the local

flow speed. That is, they are not strongly bventilatedQ.

2.3. Implications

Because Eqs. (2.1) and (2.9) are coupled by the presence of T(t) and r(t) in both

equations, a full solution for the evolution of a spray droplet must solve both equations

simultaneously. Andreas (1989) gives the numerical details for such a solution, and this is

the process I followed to produce Fig. 1. I will refer to such calculations as a full

microphysical simulation.
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Fig. 1 is typical of many similar computational runs that I have made in the sense that

all these show that temperature evolution and radius evolution are nearly decoupled (cf.

Andreas, 1990, 1992; Andreas and DeCosmo, 1999). In other words, a droplet falls to its

equilibrium temperature Teq before much water has evaporated. Then the evaporation to its

equilibrium radius req occurs, largely, while the droplet is at constant temperature Teq. The

time scales that characterize these two processes, sT and sr (see Fig. 1), therefore always

differ by three orders of magnitude: thermal evolution is very quick; radius evolution is

much slower. This decoupling also means that the relative humidity has little influence on

Teq or sT, while the sea surface temperature has little influence on req or sr since the droplet
is at Teq for most of its evaporation.

I will invoke this decoupling to deduce approximation formulas for Teq, req, sT, and sr.
3. Droplet equilibrium temperature, Teq

Many presume that the equilibrium temperature, Teq, of a sea spray droplet is the wet-

bulb temperature, Twet (cf. Kinzer and Gunn, 1951; Fairall et al., 1994; Lighthill, 1999;

Bao et al., 2000). Andreas (1995) demonstrates, however, that, because a seawater droplet

is saline and has a highly curved surface, Teq can differ significantly from Twet, especially

for droplets with radii less than 10 Am. That is, Eq. (2.8) shows that the vapor pressure at

the surface of a droplet depends not only on esat(T)–which is the key moisture variable in

the definition of the wet-bulb temperature–but also on droplet size and salinity.

Kepert (1996) therefore devised a quick method to estimate Teq from the microphysical

equations given above. Andreas (1996) modified Kepert’s method slightly to make it

compatible with my specific implementation of the microphysical equations. That

prediction equation is

b
T 2
a

a2

2
� a

2Ta þ b� 273:15

Ta þ b� 273:15

� �
þ 1

	 

exp yð Þ

� �
DT2

þ 1þ b
Ta

a � 1ð Þexp yð Þ
	 


DT � b f � exp yð Þ½ � ¼ 0: ð3:1Þ

Here,

a ¼ abTa

bþ Ta � 273:15ð Þ2
ð3:2Þ

and

b ¼ esat Tað Þ
Ta

LvMwDwV

RkaV
; ð3:3Þ

where a =17.502 and b=240.97 8C.
Eq. (3.1) is a quadratic in DT, where

DT ¼ Teq;est � Ta; ð3:4Þ
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Teq,est is an estimate of Teq, and both Teq,est and Ta are in Kelvin. The solution therefore

involves evaluating the coefficients in Eq. (3.1) at the droplet’s initial conditions–the

radius is r0, temperature is Ts, and salinity S is the surface salinity of the ocean–and then

solving for DT.

Kepert (1996) and Andreas (1996) show that estimates of Teq based on this procedure

are within 0.02 8C of the equilibrium temperature that results from integrating the full

microphysical equations [i.e., Eqs. (2.1) and (2.9)] for all droplets with initial radii from

0.5 to 500 Am, for air temperatures from 0 to 30 8C, and for salinities from 0 to 40 psu.

The solution is likely accurate for conditions beyond these ranges, but these are the

conditions for which we tested it.

Eq. (3.1) is not, however, valid for all relative humidities that exist over the ocean. Dry

sea salt particles deliquesce (change from dry particles to aqueous droplets) as the relative

humidity rises through 75% (Twomey, 1953; Pruppacher and Klett, 1978, Table 4-3).

Likewise, seawater droplets evolve into dry sea salt particles when placed in an

environment with a relative humidity less than 75%. Therefore, Eq. (3.1) is not appropriate

when the ambient relative humidity is less than 75%. Kepert (1996) and Andreas (1996)

discuss this issue in more detail.

If a spray droplet undergoes this transition to a sea salt particle, its final temperature

will simply be Ta, the air temperature. We can also estimate its final radius as the effective

dry radius, rd, from

rd ¼
3ms

4pqNaCl

� �1=3

; ð3:5Þ

where qNaCl is the density of sodium chloride, and ms comes from Eq. (2.7).
Fig. 2. A comparison of two estimates of the droplet equilibrium temperature: one (Teq) is based on the full

microphysical equations and is assumed to be more accurate; the other (Teq,est) is a quick estimate based on Eqs.

(3.1)–(3.4). Here, sea surface temperature (Ts) is 28 8C, air temperature (Ta) is 26 8C, sea surface salinity (S) is

34 psu, and the relative humidity (RH) ranges from 80% to 97.5%. Barometric pressure is assumed to be 1000 mbar.



Fig. 3. As in Fig. 2; but here, water temperature is 10 8C, air temperature is 8 8C, and surface salinity is 10 psu.
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Figs. 2 and 3 show sample calculations of the droplet equilibrium temperature based on

Eqs. (3.1)–(3.4). Fig. 2 depicts typical conditions over the tropical ocean; Fig. 3 is for

lower temperature and lower salinity. In both plots, though, the quick estimate of

equilibrium temperature, Teq,est, is always within about 0.015 8C of the equilibrium

temperature computed with my full microphysical model (denoted Teq).

Andreas (1996) shows similar plots for other conditions; and these, too, suggest that

Teq,est is biased low compared to Teq. On the other hand, Kepert’s (1996) similar plots

always show his particular estimate of Teq,est to be greater than Teq. Andreas (1996),

however, repeats some of Kepert’s calculations and still finds Teq,est�Teq to be negative. I

believe we must be using slightly different parameterizations in our full microphysical

models. Nevertheless, the conclusion remains that Eqs. (3.1)–(3.4) yield estimates of the

droplet equilibrium temperature that are within a few hundredths of a degree of a much

more computationally intensive estimate based on a full microphysical simulation.
4. Droplet temperature time constant, tT

Pruppacher and Klett (1978, pp. 446–447) estimate the temperature e-folding time sT
starting from Eq. (2.9) (also Edson and Fairall, 1994). Here, I present a slightly modified

version of their derivation that is more compatible with my full microphysical model.

Because the droplet radius changes very little over time sT (see Fig. 1), qvr in Eq. (2.9)

is essentially a function only of droplet temperature T during the initial stages of droplet

evolution [see Eqs. (2.11) and (2.8)]. Furthermore, this same observation argues that

LvDwV (qv�qvr) is a small term in Eq. (2.9). We can therefore approximate

qvrgqv;sat Tð Þ; ð4:1Þ
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where qv,sat(T) is Eq. (2.11) with y set to zero. This approximation basically means that we

are ignoring the effects of droplet curvature and salinity to estimate the saturation vapor

density at the droplet’s surface. I will show later, however, that this approximation does not

degrade our ability to predict sT for small droplets or for a wide range of salinities—again,

because evaporation plays little role in determining how droplet temperature evolves

toward Teq.

With these approximations, the water vapor term in Eq. (2.9) becomes

qv � qvr Tð Þg� qv;sat Tað Þ
	
1� qv

qv;sat Tað Þ



þ qv;sat Tað Þ � qv;sat Tð Þ



:

	
ð4:2Þ

Here, we recognize qv /qv,sat(T) as the fractional relative humidity, f.

Substituting Eq. (4.2) into Eq. (2.9) yields

d

dt
Ta � Tð Þ ¼ � 3 Ta � Tð Þ

qscpsr
2

"
kaVþ

LvDwV qv;sat Tað Þ � qv;sat Tð Þ

 �

Ta � T

#

þ
3LvDwV 1� fð Þqv;sat Tað Þ

qscpsr
2

: ð4:3Þ

If we approximate

qv;sat Tað Þ � qv;sat Tð Þ
Ta � T

g
Bqv;sat

BT
j
Ta

ð4:4Þ

and invoke the observation from Fig. 1 that r changes negligibly while droplet temperature

falls to Teq, we can further approximate Eq. (4.3) as

d

dt
Ta � T tð Þ½ � ¼ � A Ta � T tð Þ½ � þ B: ð4:5Þ

Here,

A ¼ 3

qscpsr
2
0

kaVþ LvDwV
Bqv;sat

BT j
Ta

� �
ð4:6Þ

and

B ¼
3LvDwV 1� fð Þqv;sat Tað Þ

qscpsr
2
0

: ð4:7Þ

That is, r in Eq. (4.3) is r0, and we evaluate Lv at Ts and kaV and DwV at r0 and Ts. Lastly,

in Eq. (4.5), I compute Bqv,sat /BT|Ta
from (e.g., Andreas and Cash, 1996)

Bqv;sat

BT j
Ta

¼ qv;sat Tað Þ ab

bþ Ta � 273:15ð Þ2
� 1

Ta

" #
; ð4:8Þ

where Ta is still in Kelvin.



Fig. 4. A comparison of two estimates of a spray droplet’s temperature e-folding time. One estimate (sT) is based
on my full microphysical model; the other (sT,est) is a quick estimate based on Eq. (4.11). Ambient conditions here

are as in Fig. 2.
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With A and B constants for the given conditions, Eq. (4.5) has the solution

Ta � T tð Þ ¼ Ta � Tsð Þexp � Atð Þ þ B

A
1� exp � Atð Þ½ �: ð4:9Þ

As t approaches infinity here, T(t) approaches Teq; therefore, within this approximation,

Ta�B /A is another estimate of Teq. Consequently, we can reduce Eq. (4.9) to

T tð Þ � Teq

Ts � Teq
¼ exp � Atð Þ: ð4:10Þ

Compare this with Eq. (1.4), which is the equation that defines sT. Clearly,

sT;est ¼
1

A
¼ qscpsr

2
0

3 kaVþ LvDwV
Bqv;sat

BT j
Ta

� � : ð4:11Þ

Figs. 4 and 5 compare estimate of the temperature e-folding time based on Eq. (4.11)

with estimates based on my full microphysical model (denoted sT) for the same ambient

conditions depicted in Figs. 2 and 3. For the cases shown, which are typical of other

ambient conditions, sT,est is within 5% of sT and, for typical oceanic conditions, is usually
much closer to sT.
5. Droplet equilibrium radius, req

Fitzgerald (1975) derived formulas to approximate the equilibrium radius req of aqueous

solution droplets for a variety of solutes. Andreas (1989) showed, however, that, when the

solute is NaCl, Fitzgerald’s estimates of req differ appreciably from estimates based on full



Fig. 5. As in Fig. 4; but here, ambient conditions are as in Fig. 3.
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microphysical calculations. Therefore, I derive here a new method for estimating req that is

more compatible with a modern microphysical model of droplet evolution.

My criterion for a droplet to be at its equilibrium radius is that its radius is no longer

changing with time. In other words, in the radius evolution equations, Eq. (2.1), dr / dt =0.

Therefore, the equilibrium radius satisfies

f � 1ð Þ � y req
� �

¼ 0; ð5:1Þ

where Eq. (2.2) gives y as a function of radius and other variables.

By defining the function

g rð Þ ¼ f � 1ð Þ � y rð Þ; ð5:2Þ

we can use Newton’s method to find req. The recursion relation is

rkþ1 ¼ rk �
g rkð Þ

Bg=Brjrk
; ð5:3Þ

where rk is the kth estimate of req in the iterative solution.

For completeness, let me write down Bg /Br, which is

Bg

Br
¼ 2Mwrs

RTaqwr
2
� mUsms Mw=Msð Þ

4pqsr
3=3ð Þ � ms

4pr2qs

� �
: ð5:4Þ

Note that rs, Us, and qs here all are functions of radius because, as the droplet evaporates,

the droplet’s salinity increases. Andreas (1989) gives equations for rs and qs as functions

of salinity and temperature; but these come right out of Pruppacher and Klett (1978). I

evaluate both rs and qs at Teq. Eq. (2.3) shows how to compute Us.

Figs. 6 and 7 compare sample calculations of the equilibrium radius estimated from

Eqs. (5.1)–(5.4) (i.e., req,est) with estimates from the full microphysical model (designated



Fig. 6. Two quick estimates of the equilibrium radius of a saline water droplet are compared with estimates based

on my full microphysical model (req). The quick estimates derive from Eqs. (5.1)–(5.4) (req,est, thick lines) and

from Fitzgerald’s (1975) algorithm (req,F, thin lines). Ambient conditions here are as in Fig. 2.
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req). Ambient conditions are the same as in Figs. 2 and 3. To reiterate the statement I made

earlier that Fitzgerald’s (1975) approximation methods do not agree with my full

microphysical calculations, I also plot in Figs. 6 and 7 estimates of req based on his

algorithm (i.e., req,F).

The results depicted in Figs. 6 and 7 show that my quick estimates of req (i.e., req,est)

agree very well with estimates derived from a full microphysical simulation of droplet

evolution: req,est is typically within 4% of req.
Fig. 7. As in Fig. 6; but here, ambient conditions are as in Fig. 3.
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Fitzgerald’s (1975) algorithm differs markedly in Figs. 6 and 7 from both my full

microphysical model and from my quick estimate of req. Admittedly, I am sometimes using

his algorithm beyond the size and humidity ranges for which he developed it. He states that it

is appropriate for droplets with initial radii between about 0.2 and 12 Am and for relative

humidities of at least 81%. But even within these ranges, Fitzgerald’s estimates are higher for

small droplets and lower for larger droplets than req values based on my full microphysical

model. Plots in Andreas (1989) show this same behavior. I, of course, believe my modern

model is more correct than Fitzgerald’s algorithm, but I know of no independent

confirmation of this conclusion. Nevertheless, because droplets with initial radii up to

500 Am are important in the spray latent heat equation, Eq. (1.2) (Andreas, 1992), I need a

better estimate of req for these large droplets than Fitzgerald’s algorithm can provide.
6. Droplet radius time constant, t r

The radius e-folding time sr, as defined by Eq. (1.7), has proven to be the most difficult

of the four microphysical endpoints to estimate quickly. I have tried several approaches

and present here the most accurate that I have found; this approach, however, still

produces estimates of sr that, for some conditions, differ by several tens of percent from sr
values based on full microphysical simulations.

For t /sr up to 1, Eq. (1.6) suggests that the function

h tð Þuln
r tð Þ � req

r0 � req

	 

ð6:1Þ

is approximately linear in t. I therefore model h(t) around time zero with a second-order

Taylor series:

h tð Þ ¼ h 0ð Þ þ t
dh

dt
j
t¼0

þ 1

2
t2
d2h

dt2
j
t¼0

ð6:2Þ

for tVsr.
Because r(0)= r0 by definition, h(0)=0. Further, from Eq. (6.1),

dh

dt
¼ 1

r tð Þ � req

dr

dt
: ð6:3Þ

Hence,

dh

dt
j
t¼0

¼ 1

r0 � req

dr

dt
j
r0

; ð6:4Þ

where I can easily evaluate dr / dt|r0 from Eq. (2.1).

Likewise, from Eq. (6.3),

d2h

dt2
¼ 1

r tð Þ � req

d2r

dt2
� 1

r tð Þ � req

 �2 dr

dt

� �2

: ð6:5Þ
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Consequently, in Eq. (6.2),

d2h

dt2
j
t¼0

¼ 1

r0 � req

d2r

dt2
j
r0

� 1

r0 � req
� �2 dr

dt
j
r0

� �2

; ð6:6Þ

where d2r / dt2|r0 also comes from Eq. (2.1).

I want to determine sr from Eq. (6.2). From Eqs. (1.6) and (6.1), we see that h(sr)=�1.

Hence, with Eqs. (6.4) and (6.6), Eq. (6.2) becomes

0 ¼ 1þ 1

r0 � req

dr

dt
j
r0

	 

sr þ

1

2

1

r0 � req

d2r

dt2
j
r0

� 1

r0 � req
� �2 dr

dt
j
r0

� �2
" #

s2r

ð6:7Þ

when it is evaluated at sr. The quadratic formula then gives

sr;est ¼
� dr

dt
j
r0

� 3
dr

dt
j
r0

� �2

� 2 r0 � req
� �2d2r

dt2
j
r0

" #1=2

d2r

dt2
j
r0

� 1

r0 � req

dr

dt
j
r0

� �2
: ð6:8Þ

Here, I have taken the negative sign on the square root term in the numerator because the

denominator is always negative for evaporating droplets. To be consistent with my theme

of developing methods to compute the microphysical endpoints quickly, I compute req for

use in Eq. (6.8) from the algorithm in Section 5.

Figs. 8 and 9 compare estimates of the radius e-folding time computed with Eq. (6.8)

with values from my full microphysical model (denoted sr) for the same ambient
Fig. 8. My quick estimate of the radius e-folding time from Eq. (6.8) (i.e., sr,est) is compared with the e-folding

time computed with the full microphysical model (i.e., sr). Ambient conditions are as in Fig. 2.



Fig. 9. As in Fig. 8; but here, ambient conditions are as in Fig. 3.
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conditions as in Figs. 2 and 3. The estimates of sr here based on Eq. (6.8) are not as good,

in general, as my quick estimates of the other microphysical endpoints: in these figures,

sr,est differs from sr by as much as 25%. But for typical oceanic conditions–that is, for a

sea surface salinity near 34 psu–the quick estimate seems to be fairly good: in Fig. 8, sr,est
is always within 11% of sr for the relative humidities depicted.

I suspect that the relatively poor performance of Eq. (6.8) for low salinity results

because my algorithm must evaluate dr / dt and d2r / dt2 in Eq. (6.8) at r0, which is much

larger than req when the salinity is low. In other words, a truncated Taylor series expansion

around t=0, Eq. (6.2), is not as accurate when the droplet radius at equilibrium is a lot

smaller than the initial radius.

In high humidities, when spray droplets grow rather than evaporate, the square root term

in the numerator of Eq. (6.8) can have a negative argument. Eq. (6.8) therefore does not

have a real solution. To work around this problem, I test to make sure that the argument

within the square root is positive. If it is not, I use the method described next to estimate sr.
Notice from Eq. (1.6) that

dr

dt
¼ � r0 � req

sr
exp � t=srð Þ: ð6:9Þ

Hence, at t =0, when r(t)= r0,

sr l ¼ � r0 � req

dr=dtjr0
ð6:10Þ

is another estimate of the radius e-folding time. I denote it sr1 because Eq. (6.10) is

equivalent to a first-order Taylor series [i.e., see Eq. (6.7)]. Of course, dr / dt|r0 must again

come from Eq. (2.1).



Fig. 10. Estimates of the radius e-folding time for high relative humidity that are based on Eq. (6.10) (i.e., sr1) are
compared with estimates from the full microphysical model (i.e., sr). The plot shows computations for 13 initial

radii (r0) between 0.5 and 500 Am (not distinguished on the plot) for each of eight combinations of sea surface

temperature (Ts, in 8C), air temperature (Ta, in 8C), and surface salinity (S, in psu). The barometric pressure is

always 1000 mbar. The line is Eq. (6.11).
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Fig. 10, however, suggests that Eq. (6.10) does not compare well at high humidities

with values of sr from the full microphysical model. This plot compares estimates of sr
from Eq. (6.10) and from the full microphysical model for eight combinations of surface

temperature, air temperature, and surface salinity. Further, for each combination of

conditions, I estimate sr for five relative humidities and for 13 initial droplet radii ranging

from 0.5 to 500 Am. The plot includes all 520 of these comparisons of sr. In other words,

the cluster of points at each relative humidity has 104 members.

The few outliers at RH=98% in Fig. 10 arise because my full microphysical model for

radius evolution, Eq. (2.1), has some trouble when f�1�y is near zero early in the

calculation: that is, when the droplets starts near equilibrium. This is the situation when

RH=98% and S =34 psu.

The solid line in Fig. 10 is

srl=sr ¼ � 9:4013� 102 þ 1:93607� 103f � 9:955� 102f 2; ð6:11Þ

where f is again the fractional relative humidity. This line is a reasonable fit to the averages

of the points at each relative humidity depicted in Fig. 10 and, therefore, provides a

correction to Eq. (6.10) for 97.5%VRHV99.5%. That is, an alternative estimate of sr
when Eq. (6.8) fails at high humidity is

sr;est ¼ � r0 � req

dr=dtjr0
� 9:4013� 102 þ 1:93607� 103f � 9:955� 102f 2

� ��1
:

ð6:12Þ
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From the range of points shown in Fig. 10, we see that, for relative humidities between

97.5% and 99.5%, Eq. (6.12) has an accuracy comparable to the estimates shown in Figs.

8 and 9; it gives sr usually to within F20%.
7. Discussion

As I explained in the Introduction, my main motivation for developing quick estimates

for Teq, req, sT, and sr is to use these in estimating the spray heat fluxes with equations

such as Eqs. (1.1) and (1.2). Now, rather than having to use a full microphysical model

to compute these microphysical endpoints, as Andreas (1992) and Andreas and DeCosmo

(2002) did, I can estimate the spray-mediated heat fluxes roughly two orders of magnitude

faster using the results of the last four sections.

Because Eq. (1.4) is an accurate model for the temperature evolution of a spray droplet

until it starts undergoing significant evaporation or condensation, and because Eq. (1.6) is

an accurate depiction for the evolution of an evaporating or condensing droplet, we can

easily represent both processes using the quick estimates of Teq, sT, req, and sr. Fig. 11
again shows Fig. 1, but here I have added estimates of T(t) and r(t) from the exponential

relations (1.4) and (1.6), respectively, and with Teq, sT, req, and sr calculated from the

approximation formulas that I have presented.

In the figure for a time up to about 20 s, the exponential temperature approximation

is virtually inseparable from the temperature evolution predicted by the full micro-

physical simulation. Clearly, the approximations for Teq and sT that I have presented are

very good.
Fig. 11. Same as Fig. 1; but this plot also includes models of droplet evolution based on the exponential relations

(1.4) and (1.6), with Teq (=17.07 8C), req (=61.44 Am), sT (=0.176 s), and sr (=303 s) calculated using the

approximations developed here.



E.L Andreas / Atmospheric Research 75 (2005) 323–345 341
The exponential approximation for radius evolution in Fig. 11 is also good. In

particular, the approximation for the equilibrium radius, req, is within a micrometer of the

value resulting from the full microphysical model. With the exponential approximation for

radius evolution, however, the droplet radius is biased somewhat low early in the evolution

and is biased high late in the evolution. This latter bias results, at least in part, because the

approximation for the radius e-folding time sr tends to be too large; that is, the

approximation predicts slower evolution than evidenced in the full microphysical model.

Figs. 8 and 9 confirm this result. Both show that sr,est /sr tends to be larger than one.

The late bias in the exponential approximation for radius also results because the

exponential approximation for temperature does not capture the droplet’s warming as the

evaporation rate slows. Because the droplet warms above the Teq value used to predict req
and sr, it exchanges vapor more quickly than if it were still at Teq and thus reaches its

equilibrium radius sooner than the exponential approximation predicts.

Fig. 11 suggests that the exponential approximations (1.4) and (1.6) have much larger

ranges over which they are useful than the ranges I cited in the Introduction (based on

Andreas, 1989). Taking Fig. 11 as representative, I conclude that Eq. (1.4) is an accurate

model for droplet temperature for t /sT up to at least 100. Likewise, Eq. (1.6) is a

reasonable model for droplet radius evolution all the way up to r(t)= req, which is

approximately true at t /sr =5.
As a reality check, Andreas (1989, 1990) compared calculations from the full

microphysical model with laboratory data for droplet evaporation from El Golli et al.

(1974). Unfortunately, two of the three data sets from El Golli et al. that I had used were

for very low relative humidities, 29% and 32%. As I explained, saline droplets eventually
Fig. 12. Laboratory data from El Golli et al. (1974) show the evaporation of droplets with an initial radius of 8.2

Am. Values reported for the droplet equilibrium temperature (Teq), relative humidity (RH), and initial salinity of

the droplets (S) are listed. I infer the ambient air temperature (Ta) from these conditions. The lines show radius

evolution predicted with my full microphysical model and with the exponential approximation (1.6), where I

computed Teq, req, and sr from my approximation formulas.
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undergo a phase transition to a salt crystal when they evaporate in such humidity. None of

my approximation formulas recognize the possibility for such a transition and, therefore,

cannot predict the microphysical endpoints in low humidities.

Fig. 12 does, however, show one of the El Golli et al. (1974) data sets with a more

marine-like relative humidity, 80%. The data points here represent the evaporation of

droplets with initial radius 8.2 Am and with initial salinity 2 psu. I infer from the

droplet equilibrium temperature (22.1 8C) and the relative humidity (80%) that El Golli

et al. report that the air temperature in their chamber was 24.5 8C.
Fig. 12 shows the exponential approximation for radius evolution, Eq. (1.6), where

I have used the approximation formulas for Teq, req, and sr to calculate r(t). The agreement

with the data here is not as good as it is with the full microphysical model, which

Fig. 12 also shows (cf. Andreas, 1989, 1990). For example, sr is again computed to be

too large; hence, the exponential approximation predicts a radius evolution that is too slow.

Still, the approximation predicts that the evolution reaches the last observed radius

point, 2.1 Am, at 3.6 s, only 2.4 s slower than the observed time. In some applications,

estimates with this accuracy may be good enough.
8. Summary

Because both the temperature and the radius of saline droplets evolve with time

following approximately exponential relations–namely, Eqs. (1.4) and (1.6)–that evolution

can be represented with only four so-called microphysical endpoints: Teq, sT, req, and sr.
These are, respectively, the droplet’s equilibrium temperature and the e-folding time to

reach that temperature and the droplet’s equilibrium radius and the e-folding time to reach

that radius. Full microphysical simulations of droplet evolution yield these endpoints, but

often we would like quicker estimates that are not as computationally intensive to obtain.

Therefore, starting with the microphysical equations for droplet temperature and radius,

I have derived quick approximation formulas for all four of these endpoints. The fact that

the temperature evolution and the radius evolution of small, saline droplets are largely

decoupled underlies the success of the approximations. In effect, I can assume that the

droplet radius is constant at its initial value r0 during the temperature evolution and that

the droplet temperature is constant at Teq during most of the radius evolution. The resulting

equations for estimating Teq, sT, and sr involve one-step calculations; finding req requires

an iteration based on Newton’s method.

Several examples that compare these approximate methods with values of Teq, sT, req,
and sr from a full microphysical simulation demonstrate the validity of the approximation

methods. That is, my quick estimates of Teq are typically within 0.02 8C of temperatures

computed in a full microphysical simulation (cf. Andreas, 1996). Quick estimates of the

temperature e-folding time sT are typically within 5% of e-folding times that come from

the full model. Fig. 11 further demonstrates how good these estimates of temperature

endpoints are and how useful the exponential approximation for temperature evolution,

Eq. (1.4), is. That figure shows that Eq. (1.4) predicts a temperature evolution that is

virtually indistinguishable from the temperature evolution predicted by the full micro-

physical model for t /sT out to 100.
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My approximation formulas for the equilibrium radius req also produce very good

results when compared to the full microphysical model. These quick estimates of req are

typically within 5% of results from the full model. The radius e-folding time, sr, however
proved the most difficult quantity to estimate quickly. Some of my estimates of sr exceed
times based on a full microphysical simulation by 25%. For typical oceanic conditions,

however–with a surface salinity near 34 psu and with near-surface relative humidities of a

least 80%–the estimates of sr are better. They are typically within 10% of values from the

full model.

In closing, though I have concentrated here on saline droplets, the microphysical

equations are capable of forecasting the evolution of aqueous solution droplets containing

a variety of solutes. With minor modifications to these equations to adapt them for solutes

other than NaCl, I see no reason why my approximation formulas would not also be able

to predict the microphysical endpoints for a variety of other solution droplets.
Symbols

a (=17.502) constant occurring in Buck’s (1981) equation for saturation vapor

pressure

A variable used in approximating droplet temperature evolution; see Eq. (4.6)

b (=240.97 8C) constant occurring in Buck’s (1981) equation for saturation vapor

pressure

B variable used in approximating droplet temperature evolution; see Eq. (4.7)

cps (=4000 J kg�1 K�1) specific heat of seawater at constant pressure

dF / dr0 spray generation function in terms of r0
Dw molecular diffusivity of water vapor in air

DwV water vapor diffusivity modified for noncontinuum effects

esat saturation vapor pressure

f fractional relative humidity (i.e., f =RH/100)

g(r) function used to estimate a droplet’s equilibrium radius; see Eq. (5.2)

h function that models the evolution of the nondimensional droplet radius; see

Eq. (6.1)

ka thermal conductivity of air

kaV thermal conductivity modified for noncontinuum effects

Lv latent heat of vaporization of water

m molality of a spray droplet; see Eq. (2.4)

ms mass of salt in a spray droplet

Ms (=58.443�10�3 kg mol�1) molecular weight of sodium chloride

mw mass of pure water in a spray droplet

mw0 initial mass of pure water in a spray droplet

Mw (=18.015�10�3 kg mol�1) molecular weight of water

QL air–sea latent heat flux mediated by spray

Qs air–sea sensible heat flux mediated by spray

r [or r(t)] instantaneous spray droplet radius

R (=8.31447 J mol�1 K�1) universal gas constant

rd effective dry radius of a sea salt particle
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req equilibrium radius of a spray droplet

req,est quick estimate of a droplet’s equilibrium radius req from Eqs. (5.1)–(5.4)

req,F estimate of a droplet’s equilibrium radius req based on Fitzgerald’s (1975) algorithm

RH ambient relative humidity in percent

rk kth recursive estimate of req; see Eq. (5.3)

r0 initial radius of a spray droplet

s fractional salinity (i.e., s =S / 1000)

S salinity in practical salinity units (psu, which is practically parts per thousand by

mass, x)

t time

T [or T(t)] instantaneous spray droplet temperature

Ta ambient air temperature

Teq equilibrium temperature of a spray droplet

Teq,est quick estimate of a droplet’s equilibrium temperature from Eqs. (3.1)–(3.4)

Ts sea surface temperature (also initial temperature of the spray droplets)

Twet classical wet-bulb temperature

y variable that accounts for curvature and salinity effects on the surface vapor

pressure of a spray droplet; see Eqs. (2.2) and (2.8)

a dimensionless variable used to estimate a droplet’s equilibrium temperature; see

Eq. (3.2)

b variable used to estimate a droplet’s equilibrium temperature; see Eq. (3.3)

DT Teq,est�Ta; see Eq. (3.4)

m (=2) number of ions into which a sodium chloride molecule dissociates

qNaCl (=2.165�103 kg m�3) density of sodium chloride

qs density of seawater

qv ambient water vapor density

qvr water vapor density at the surface of a spray droplet

qv,sat saturation water vapor density

qw density of pure water

rs surface tension of a flat water surface with temperature T and salinity S

sf residence time in air of a spray droplet (parameterized in terms of its terminal

fall speed)

sr droplet radius e-folding time

sr,est quick estimate of droplet radius e-folding time sr; see Eqs. (6.8) and (6.12)

sr1 quick estimate of droplet radius e-folding time sr based on a first-order estimate;

see Eq. (6.10)

sT droplet temperature e-folding time

sT,est quick estimate of droplet temperature e-folding time sT; see Eq. (4.11)

Us practical osmotic coefficient of sodium chloride dissolved in water; see Eq. (2.3)
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