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Abstract. Although the bulk aerodynamic transfer coefficients for sensible (C,,) and latent (C,) heat over 
snow and sea ice surfaces are necessary for accurately modeling the surface energy budget, they have been 
measured rarely. This paper, therefore, presents a theoretical model that predicts neutral-stability values 
of C, and C, as functions of the wind speed and a surface roughness parameter. The crux of the model 
is establishing the interfacial sublayer profiles of the scalars, temperature and water vapor, over aero- 
dynamically smooth and rough surfaces on the basis of a surface-renewal model in which turbulent eddies 
continually scour the surface, transferring scalar contaminants across the interface by molecular diffusion. 
Matching these interfacial sublayer profiles with the semi-logarithmic inertial sublayer profiles yields the 
roughness lengths for temperature and water vapor. When coupled with a model for the drag coefficient 
over snow and seaice based on actual measurements, these roughness lengths lead to the transfer 
coefficients. C, is always a few percent larger than C,. Both decrease monotonically with increasing wind 
speed for speeds above 1 m s-r, and both increase at all wind speeds as the surface gets rougher. Both, 
nevertheless, are almost always between 1.0 x lo-’ and 1.5 x 10m3. 

Symbols 

A = a&G Prr’aR’t, a parameter in the equations modeling flow over a rough surface, 
a = 10, a constant that relates eddy contact time to distance traveled, 
b,, b,, b, coefficients of the polynomials that predict zT/z,, and zo/zc as functions of roughness Reynolds 
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drag coefficient at neutral stability, 
bulk transfer coefficient for latent heat at neutral stability, 
bulk transfer coefficient for sensible heat at neutral stability, 
specific heat of air at constant pressure, 
molecular diffusivity of heat, 
molecular diffusivity of water vapor, 
= 5.6, a constant that relates the Kolmogorov time scale to t,, 
acceleration of gravity, 
the height at which inertial and interfacial sublayer profiles match, 
latent heat flux, 
sensible heat flux, 
a function of rl,, defined by Equation (44), 
= 0.4, von K&MI&~‘s constant 
turbulent diffusivity of water vapor at neutral stability, 
turbulent diffusivity of heat at neutral stability, 
turbulent diffusivity of momentum at neutral stability, 
intrinsic permeability of a snow cover, 
latent heat of sublimation of ice, 
= v/D, Prandtl number, 
water vapor density, 
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water vapor density at an arbitrary reference height r, 
water vapor density at the surface, 
= - H&u * > 
reference height, 
= u * z,,/v, roughness Reynolds number, 
average profile value of an arbitrary scalar, 
value of the arbitrary scalar at the surface, 
equivalent to t * or q * for the arbitrary scalar, 
= v/D,, Schmidt number, 
potential temperature, 
time, 
average eddy contact time over a smooth surface, 
bulk temperature just above the interfacial sublayer, 
potential temperature at an arbitrary reference level r, 
= G2(z,v/u,) , I” fundamental eddy time-scale over a rough surface, 
= 85v/u:, fundamental eddy time scale over a smooth surface, 
surface temperature, 
= - HSpcp *, 
longitudinal velocity, 
velocity at an arbitrary reference height r, 
velocity at a reference level of 10 m, 
= (~/p)“~, friction velocity, 
volume of air expelled by percolating melt water, 
downward velocity of the wetting front, 
downwind distance, 
distance over which an eddy remains in contact with a smooth surface, 
height, 
roughness length for water vapor, 
roughness length for an arbitrary scalar, 
roughness length for temperature, 
roughness length for velocity, 
= 5.47 x lo6 m - r s - r, a constant in the expression for the velocity of the wetting front, 
= K,/K,, inverse of the turbulent Schmidt number, 
= K,,/K,,,, inverse of the turbulent Prandtl number, 
the multiplicative constant in Charnock’s (1955) equation, 
= (Df,)“‘, a fundamental length scale for flow over a rough surface, 
the dissipation rate of turbulent kinetic energy, 
= z/b,, nondimensional height over a rough surface, 
= hi&, nondimensional matching height over a rough surface, 
= u i z3/9 vDx, nondimensional variable characterizing flow over a smooth surface, 
= u * z3/9a vDr,, nondimensional height over a smooth surface, 
= u * h3/9a vDr,, nondimensional matching height over a smooth surface, 
= u:z3/9 vDx,, another form of the nondimensional height over a smooth surface, 
irreducible water content of a snow cover, 
maximum water content of a snow cover, 
kinematic viscosity of air, 
root-mean-square surface elevation in centimetres, 
density of air, 
density of ice, 
density of snow, 
ratio of kinematic viscosity to molecular diffusivity; equivalent to Pr for heat and SC for water 
vapor, 
surface stress, 
porosity of snow, 
distribution function for eddy contact time over a rough surface, 
distribution function for eddy contact time over a smooth surface. 
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1. Introduction 

In the atmospheric surface layer at neutral stability, the velocity (U), potential tempera- 
ture (T), and water vapor density (Q) profiles have the familiar, semi-logarithmic form, 

U(z) __ = k- ’ In (z/zJ , 
u* 

(1) 

T”‘, - To = (cl,k) - ’ In (z/z& , 
* 

‘(‘) - ” = (aEk)- ’ h(z/z& . 
q* 

(2) 

Here z is the height above the surface; k is von K&r&m’s constant (0.4); To is the surface 
temperature; Q, is the water vapor density of air at the snow or sea ice surface; and 
aH ( = K,/lu,) and a, ( = &/KM) are the ratios of the scalar turbulent diffusivities, K, 
and KE, to the turbulent difhtsivity for momentum, KM (e.g., Dyer, 1974). The u *, t *, 
and q * relate the protiles to the turbulent surface fluxes of momentum (7) and sensible 
(HJ and latent (H,-) heat: 

ffs = -pcpu*t,, 
HL. = -L,u*q*, 

(5) 
(6) 

where p is the air density; cP, the specific heat of air at constant pressure; and L,, the 
latent heat of sublimation of ice. 

Equations (l)-(3) define the roughness lengths. z, is the familiar roughness length for 
wind speed; zT and zo are the roughness lengths for temperature and water vapor - the 
so-called scalar roughness lengths. z, is the height at which the semi-logarithmic velocity 
profile extrapolates to U = 0. Similarly, zT and ze are the heights at which the 
semi-logarithmic temperature and water vapor profiles extrapolate to the surface values, 
To and Q,, respectively. All are fictitious levels since the semi-logarithmic protiles are 
not valid down to the roughness lengths. 

Knowing the roughness lengths is equivalent to knowing the bulk-aerodynamic 
transfer coefficients for momentum (C,, the drag coefficient) and for the scalars, 
sensible (C,) and latent (C,) heat. After specifying a reference height I (henceforth taken 
as 10 m) to be the level where average values of wind speed (U,), temperature (Tr), and 
humidity (a) are measured, we define these transfer coefficients as 

z=pcJJ,z, (7) 

f-f, = PC,GJWO - TJ 3 (8) 

ffL = WWrtQo - QJ. (9) 
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For neutral stability Equations (l)-(6), in turn, relate these coefficients to the roughness 
lengths : 

c, = aHkCAJ2 

kc; ‘/2 - ln(z,/z,) 
> 

c, = aEkCi12 

kc,- “2 - ln(zQ/zo) 

(11) 

(12) 

Since correcting the transfer coefficients for stability effects is straightforward (e.g., 
Deardorff, 1968; Large and Pond, 1982; Andreas and Murphy, 1986), from here on all 
references to transfer coefficients will be to these neutral-stability ones. Clearly, from 
(lo)-( 12), C, = CD only when zT = z,, and aH = 1; and C, = C, only when zp = z,, and 
a - 1. We shall see shortly that, contrary to the common assumption (e.g., Paulson, 
lG70; Businger et al., 1971; Lettau, 1979), zT and zQ rarely equal z,. 

A goal of micrometeorology is to find C,, C,, and C, or, equivalently, z,, zT, and 
zQ. These are fairly well known over the ocean but are still only poorly known over most 
other horizontally homogeneous surfaces. In particular, only C, is well known over 
sea ice. The extensive set of C, values that Banke et al. (1980) reported show that over 
sea ice, C, is an increasing function of surface roughness. The roughness parameter here 
is the root-mean-square (r.m.s.) surface elevation along a line parallel to the wind 
direction and should not be confused with the roughness length z,. Leavitt et al. (1977) 
and Shirasawa (1981) also found that C, increased as the sea ice surface became 
rougher. Kondo and Yamazawa (1986) made similar observations over snow-covered 
ground. Arya (1973, 1975) had theoretically predicted this increase in C, with 
roughness, showing it to be a consequence of the form drag. 

There have been few published attempts, however, to measure C, and C, over snow 
or sea ice. Hicks and Martin (1972) found C, = 0.9 f 0.3 x lo- 3 and 
C, = 2.5 f 0.5 x 10e3 over snow-covered Lake Mendota. Thorpe et al. (1973) 
reported C, = 1.2 + 0.7 x lo- 3 and C, = 0.55 + 0.23 x lob3 for measurements over 
sea ice in the Beaufort Sea. Thus, one experiment suggested that C,/C, was in the 
interval 0.2-0.6, while the other suggested it was in the interval 0.6-0.9. Very recent 
measurements by Kondo and Yamazawa (1986) over snow-covered fields in Japan 
yielded C, values generally in the interval 1. l-l .5 x 10 - 3, thus supporting these earlier 
C, measurements. But the value of C, is still in question. Consequently, without an 
adequate theory from which to estimate C, and C, and, until recently, having only the 
seemingly contradictory values of Hicks and Martin (1972) and Thorpe et al. (1973) 
sea ice modelers have had to rely on intuition or convention. Most (e.g., Parkinson and 
Washington, 1979; Hibler, 1980) have followed Maykut (1978) and assumed that C, 
and C, are constant - both equal to 1.75 x lo- 3. But (11) and (12) imply that C, and 
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C, are not constant; they depend on the characteristics of the surface and on the wind 
speed, since C, depends on the surface characteristics. 

This paper presents a theoretical model for predicting C, and C, over snow and sea 
ice that relies on the empirical dependence of C, on surface roughness reported by 
Banke et al. (1980). From (11) and (12) it is clear that predicting C, and C, requires 
also finding zT/zo and zQ/z,. To do this I derive the scalar profiles in the interfacial 
sublayer over both aerodynamically rough and aerodynamically smooth surfaces. 
Matching these to the semi-logarithmic or inertial sublayer (Tennekes and Lumley, 1972, 
p. 147) profiles, (2) and (3), then yields the scalar roughness. I treat snow and sea ice 
with the same model because sea ice is generally snow covered; the two surfaces are, 
therefore, aerodynamically similar. 

2. Aerodynamically Rough Surface 

With the ratio of kinematic viscosity to molecular diffusivity (a), the roughness Reynolds 
number R * = u * zO/ v customarily parameterizes wall-bounded shear flows. Although 
two flows may have different velocity or length scales or different kinematic viscosities 
(v), they are dynamically similar if their roughness Reynolds numbers and their cr 
values are the same. Three dynamic regimes are possible, each characterized by a 
different R * range (e.g., Businger, 1973). If R * 5 e-’ = 0.135, the surface roughness 
elements are imbedded in the viscous sublayer and the surface is aerodynamically 
smooth. If R * 2 2.5, the roughness elements poke through the viscous sublayer and the 
surface is aerodynamically rough. For 0.135 < R * < 2.5, the surface is in transition. 

Brutsaert (1975a) and Liu et al. (1979) based models of the turbulent transfer over 
aerodynamically rough surfaces on a surface-renewal model (Danckwerts, 1970, 
p. 100). Small eddies continually sweep into the interfacial sublayer, remain in contact 
with the surface for a short time, transferring heat and moisture by molecular diffusion, 
and then finally burst upward ahead of inrushing new eddies. Grass (1971) suggested 
that while the eddies are in contact with the surface, they may be stagnant - trapped 
by the roughness elements. Brutsaert (1975a) thus assumed that over a rough surface, 
the interfacial transfer of scalar properties is strictly a diffusion process. That is, using 
temperature as an example, 

EL-DE 
at az2 ’ (13) 

where t is time. In (13) and in all that follows, we could use water vapor or any other 
scalar that obeys the same conservation equation as temperature (Hill, 1978); the only 

changes would be in the molecular dilfusivity D and in the other thermodynamic 
constants, such as the CI’S or I+, and L,. The boundary conditions on (13) are 

T = T,, for z > 0, t=O, 

T=T, forlargez, t>O, 

T = To for z = 0, t>o, 

(14) 
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where Tb is the ‘bulk’ temperature above the interfacial sublayer. Many standard texts 
show how to solve (13) with the boundary conditions (14) (e.g., Duff and Naylor, 1966, 
p. 118); the solution is 

T(z, t) = (To - TJ erfc 2 + Tb , [ 1 2(Dt)li2 
(15) 

where erfc is one minus the error function, erf (Abramowitz and Stegun, 1965, p. 297). 
Equation (15) models the diffusion into a single eddy. Because eddies continually 

sweep over the surface, we must integrate in time to find the average interfacial sublayer 
temperature profile. Brutsaert (1975a) and Liu and Businger (1975) used Danckwerts’s 
(195 1) distribution function, 

$4.,(t) = trp ’ exp( - t/t,) , t > 0 , (16) 

to model the fraction of surface area that has had eddies in contact for a time t. Here 
t, is a time-scale yet to be specified. The time-averaged temperature profile is thus 

cc 

T(z) = 
s 

T(z, O&.,(t) dt . (17) 

0 

Abramowitz and Stegun (1965, p. 303) show how to integrate the error function in (15); 
the solution of (17) is thus 

T(z) = To - (To - Tb) [l - exp( -z/6,)] , 

where 6, = (Dt,)““. 

(18) 

Khundzhua and Andreyev (1974) verified (18) experimentally in the aqueous sublayer 
in the Black Sea and related the length scale 6, to the sensible heat flux. For air this 
relation is 

6, = pc,D(T, - T&H, . (19) 

Actually, (19) is a necessary consequence of (18). H, is related to the temperature 
gradient evaluated at the surface by 

H,= -pcpD E 
az z=o' (20) 

But from (18) BT/i% Z=. is simply (Tb - T&6,; (19) thus follows from (20). Values 
of 6, over snow are typically in the range 0.01 to 4 cm. 

Substituting (5) for H, in (19), we can write 

To - Tb = -u,t*bJD. (21) 

Substituting this in (18) yields a form for the temperature profile in the interfacial 



SCALAR ROUGHNESS AND SCALAR TRANSFER OVER SNOW AND SEA ICE 165 

sublayer that is compatible with the inertial sublayer profile, 

T(Z)t-T,=(~,6T/D)[1-exp(-<)]. 
* 

(22) 

Here [ = z/6,. 
Brutsaert (1975a) and Liu et al. (1979) assumed that the time scale t, in 6, is 

proportional to the Kohnogorov time-scale (v/&)“~, where E is the dissipation rate of 
turbulent kinetic energy. Formalizing this assumption by defining a proportionality 
constant G and setting E = u’,/zo (Liu et al., 1979), we have 

or 

t, = G2(zo v/u:)“~ , (23) 

6,/z, = G Pr- ‘I2 R g314 , (24) 

where Pr = v/D is the Prandtl number. Liu et al. (1979) estimated G = 9.3 on the basis 
of data reported by Mangarella et al. (1973) for flow over wind waves. Since snow or 
sea ice surfaces are less compliant than water, this value of G may not be appropriate. 
In fact, in evaluating G, Liu et al. (1979, their Figure 3) also considered data reported 
by Chamberlain (1968) that imply G = 5.6 for flows over various solid surfaces. My 
model, with this G value, fits data collected over various solid surfaces much better than 
with G = 9.3. Evidently, the proportionality constant in (23) and (24) depends on 
whether the surface is firm or compliant. 

With (24) we can now simultaneously solve (2) and (22) to find zT. This is where I 
diverge from Brutsaert (1975a). I will simply match the two temperature profiles and 
their first derivatives at an intermediate, unknown level z = h. The temperature and the 
heat flux will, therefore, both be continuous from the interfacial to the inertial sublayer. 
With these prolile and first-derivative equations, we can tind the two unknowns h and 
zT. Brutsaert (1975a) never computed the interfacial sublayer profile; instead he solved 
for zT by matching the interfacial and inertial sublayer fluxes at the arbitrary level 
h = 7.392,. Although they do not say so explicitly, Liu et al. (1979) used the method of 
solution that I am proposing. They, however, set G = 9.3 and cr, = cr, = 1.14, while I 
use G = 5.6 and cc, = cr, = 1.0. 

Matching the profiles (2) and (22) at z = h gives 

In [ - ln(z,/&) - ln(z,/zo) = A[ 1 - exp( - g)] , 

where [ = h/6,, and 

(25) 

A = LX H kG Pr”’ R’14 * . (26) 

Matching the first derivatives at [ yields 
. n 
iexp(-[)=A-‘. (27) 

We need not worry here or in (25) about the stability of the atmospheric surface layer 
and its effects on the inertial sublayer profiles. We shall see that the matching level is 
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well below the region where atmospheric stability affects the semi-logarithmic profiles 
(Bradley, 1972). Notice that (27) has a solution only for A > 2.72. Substituting it into 
(25) gives a formal expression or z=/z,, 

q-/z0 = 1^(6,/z,) exp [ [- ’ - A] . (28) 

Here A and & are functions only of Pr and R * . I solve for [ by using Newton’s 
method to find the zeroes in (27) as functions of Pr and R *. Figure 1 shows 
h/z, = (f 6,/z,) for both temperature and water vapor as a function of R *. The values 
are much smaller than the constant that Brutsaert (1975a) used. He chose h = 7.392, 
because this is approximately the height of the roughness elements. By implying that the 
roughness elements protrude above the interfacial sublayer, Figure 1 is, thus, consistent 
with our conceptual model of molecular diffusion into stagnant eddies. 

Fig. I. The matching height over an aerodynamically rough surface as a function of roughness Reynolds 
number. For temperature, (r = 0.71; for water vapor, 0 = 0.63. 

Figure 2 shows the transition of temperature and water vapor profiles from the 
interfacial to the inertial sublayer for R * = 10. Both the profiles and their first 
derivatives are continuous. The vertical fluxes of sensible and latent heat are, therefore, 
also continuous. 

Figure 3 compares predictions of my model for the scalar roughness, z,, with 
experimental data collected over aerodynamically rough surfaces (R * 2 2.5) by Owen 
and Thomson (1963) and Chamberlain (1966, 1968). All the data sets are from wind 
tunnel measurements and represent three different 0 values. Chamberlain (1966) studied 
water vapor transfer over toweling and artificial grass (a = 0.62 at - 20 ‘C). Because 
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Fig. 2. The matching of interfacial and inertial sublayer profiles of temperature ((r = 0.71) and water vapor 
(u = 0.63) over an aerodynamically rough surface for R * = 10. 

the grass, however, had a roughness length of 1.0 cm - much larger than that typical 
of snow or sea ice (Untersteiner and Badgley, 1965; Banke et al., 1980; Schmidt, 1982) 
- and roughness elements unlike those of snow or sea ice, Figure 3 omits those data. 
Chamberlain (1968) collected his thorium-B (0 = 2.78) and water vapor data over a host 
of two- and three-dimensional roughness elements, some with roughness lengths as large 
as 0.6 cm. The figure indicates the data for surfaces with z,, > 0.2 cm - roughly the 
maximum sea ice roughness that Banke et al. (1980) reported. No systematic difference 
between large and small roughness lengths is evident, however. Owen and Thomson 
(1963) looked at the transfer of camphor (a = 3.2) over glass surfaces with two- and 
three-dimensional roughness. 

Measuring z,/zo is difficult under any circumstances - even in a wind tunnel-because, 
as (1) and (2) show with temperature for example, we have to know u *, t *, and zO. 
Chamberlain (1968) explained that his z0 values alone may have been in error by 50%. 
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IP- Water Vapor (5=062) 
l Chamberlw (1966) 

Camphor 0=32) 
Id” . 2-D Roughness 

Fig. 3. Model predictions for an aerodynamically rough surface compared with measured scalar roughness 
lengths for water vapor, thorium-B, and camphor. 

The scatter of the data in Figure 3 is, thus, not surprising. In view of this uncertainty, 
the model predictions are quite reasonable. The model reproduces the R * dependence 
at constant (T very well and has z,/z,, decreasing with increasing a, as the data do. Only 
the zJzO data from Owen and Thomson (1963), for which rr = 3.2, deviate significantly 
from model predictions. 

Dipprey and Sabersky (1963) investigated heat transfer in water-filled pipes. Figure 4 
compares model predictions of z,/ze with data for which R * 2 2.5 obtained from their 
Figures 6,7, and 8. Pipe flow may not seem to be a good experimental model for flow 
in the atmospheric surface layer, but the two are, in fact, mathematically equivalent. 
Flow in pipes is characterized by a viscous sublayer near the wall and a semi-logarithmic 
inertial sublayer farther from the wall (Schlichting, 1968, p. 578; Tennekes and Lumley, 
1972, p. 149), just like my model for the atmospheric surface layer. Figure 4 conhrms 
the validity of the comparison. Dipprey and Sabersky (1963) varied cr by changing the 
water temperature; the model fits their data extremely well for CT = 1.20 and reasonably 
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0 u12.79 

A U=4.38 

A u=5.94 

169 

R* 
Fig. 4. Model predictions for an aerodynamically rough surface compared with the experimental data of 

Dipprey and Sabersky (1963). 

well at the other avalues. For all of the ovalues in the figure, the difference between 
the data and the model predictions tends to decrease as R * increases. This suggests 
some experimental imprecision at low flow rates or a possible inadequacy in the model 
for 2.5 I R * < 10. Fortuitously, this low-R * bias is small for CT E 0.6-1.2, the range 
most relevant for heat and moisture transfer over snow. Therefore, my model seems to 
be an adequate fit to the available data that are most representative of an aero- 
dynamically rough snow or sea ice surface. 
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3. Aerodynamically Smooth Surface 

Although natural surfaces are seldom aerodynamically smooth, I model scalar transfer 
over a smooth surface for completeness and so I can predict the transfer over a 
transitional surface by interpolating between smooth and rough regimes. 

Brutsaert (1975a) modeled the transfer over a smooth surface by again postulating 
a surface-renewal mechanism. Over a smooth surface, however, an impinging eddy 
remains in motion; an advective diffusion model, thus, governs the process, 

U(z) g = D $ , (29) 

where U(z) is the velocity profile in the viscous sublayer. The boundary conditions on 
(29) are 

T= Tb forz>O, x=0, 

T=T, forlargez, x>O, 

T = To for z = 0 , x>o. 

(30) 

In the viscous sublayer, zu * /v < 5, 

U(z) = u:z/v (31) 

(e.g., Monin and Yaglom, 1971, p. 270; Brutsaert, 1975a). On substituting (3 1) into (29) 
and making the change of variables q = U: z3/9 VDX suggested by Kestin and Persen 
(1962), we get the equation 

The solution satisfying the boundary conditions is (Kestin and Persen, 1962) 

T( yl) = T,, - (T,, - Tb) &+ , 
r(f) 

(32) 

where I is the gamma function, and y is the incomplete gamma function (Abramowitz 
and Stegun, 1965, p. 255,260, respectively). Although Brutsaert (1975a) posed (29) with 
the boundary conditions (30), he solved only for aT/az at z = 0. 

Next impose the assumptions of the surface-renewal model - that the eddy is in 
contact with the surface only for 0 I x 5 x,,, where x,, is typically 1 m. Averaging T(u) 
over this distance interval yields 

Th-4 = To - tT;;L;) Mf, vd + ~,r(-$ VI,)] , 
3 
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where 

u-f, vlo) = w-f) - r<-$9 rlo) (35) 

is another form of the incomplete gamma function, and q,, = u~z3/9vDx0. 
Removing the explicit dependence on x0 in (34) requires averaging over all possible 

values of x0. Brutsaert (1975a) suggested setting 

x0 = au*t, (36) 

where a is a constant, and then using (16) for the distribution function oft. That is, we 
would again have the integral (17) with (34) substituted for (15). If Brutsaert had 
attempted this integration, he would have found the integral infinite, because the 
distribution function (16) is not the appropriate one over a smooth surface. The work 
of Kim et al. (197 1) suggested that for smooth surfaces, the eddy-contact time has the 
distribution 

M) = <t/t,‘> exp( - t/t,) , t > 0 , (37) 

where t, is a new time-scale. The average contact time is thus f = 2t,. In addition, from 
Figures 23 and 24 in Kim et al. (1971) I derived 

t = 17ov/u2, ) (38) 
or 

t, = 85v/u2, . (39) 

Notice, since v/u * is the appropriate scaling length in the viscous sublayer over a smooth 
surface (Tennekes and Lumley, 1972, p. 152), v/u’, is the only reasonable time-scale 
there. 

Substituting (34) and (37) into the time-averaging integral, (17), rearranging argu- 
ments, and defining qs = u * z3/9uvDts, we derive an expression for the average profile 
in the in&facial sublayer, 

x ev( - rl,/rl,) drlo. (40) 

The method of steepest descent (e.g., Dennery and Krzywicki, 1967) is useful for 
approximating such difficult integrals; it yields 

T(z) = To - (T;-$‘) {0.96Oy(& qJ2) 
3 

+ 1.3WsMk VJ - I-(+) + rl,-2/3 exp( - rtJl> . (41) 

This, to my knowledge, is the first derivation of the interfacial sublayer prolile of a scalar 
over an aerodynamically smooth surface that is based on surface-renewal concepts. 
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As with the rough-surface case, we must eliminate Tb in (41) to match the interfacial 
and inertial sublayer profiles. Again, we know how the surface flux is related to the 
profile - by Equation (20). Using this and substituting (39) for t, in (41) we find 

T,, - Tb = 1.519(85~)“~ P?‘3 t, . (42) 

Hence, 

T(z) = To + 1.458(85a)‘j3 Pr213 t,K(q,), (43) 

where 

+ 1.44[& rls) - rG> + yI,-2’3 exp(- dl} . (44) 

Notice, substituting t, and recognizing that over a smooth surface z0 = e- ’ v/u * 
(Tennekes and Lumley, 1972, p. 157), we can rewrite Q as 

vl.9 = 

Matching the profiles at z = h or at 

$ = e-6 
9 x 85~ 

(45) 

(46) 

we get 

- ln(z,/z,) = 1.458&(85~)‘~~ P?/3 K(&) . (47) 

And matching the slopes there, too, 

f = 1.458a&(85a)1’3 Pr2i3 I($‘{(@,/2)1/3 exp( - vj,/2) 

+ 1.44rl,[~(f, &) - I(+) + $fiS-2/3 exp( - qS)]) . (48) 

Again I solve (48) for fiS by Newton’s method and then find zr/z,, from (47), 

‘I3 
exp [ - 1.458a&(85a)“3 Pr213 K(fiS)] . (49) 

The constant a is yet to be specified. The viscous sublayer velocity profile, (31), is 
approximately valid from the surface to the lower boundary of the inertial sublayer at 
3Ov/u, (Tennekes and Lumley, 1972, p. 160). Therefore, integrating this profile from 
zero to 30 v/u * should yield an average velocity u for the viscous sublayer. That average 
isU= 1524 *. Comparing this result with (36) we see that c1 should be roughly 15. I have 
found that the value a = 10 fits the available data best. 

Figure 5 shows model calculations of the nondimensional matching height as a 
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Fig. 5. The nondimensional matching height over an aerodynamically smooth surface as a function 
of a. 

function of cr. For temperature and water vapor, the value hu * /v is about 32. Brutsaert 
(1975a) did his matching by assuming that hu */v = 30 for all values of 0. Figure 6 shows 
the matching of interfacial and inertial sublayer profiles for temperature and water vapor 
over an aerodynamically smooth surface. As with the aerodynamically rough surface, 
both profiles and their 6rst derivatives are continuous at h. 

Finally, Figure 7 compares model predictions with the scanty data available from 
flows over smooth surfaces. In the figure, the data from Chamberlain (1968) are the 
‘smooth surface’ values from his Tables 2 and 3. The data from Dipprey and Sabersky 
(1963) are from their smooth pipe (E-3, their Figure 5) and from their three rough pipes 
(their Figures 6-8) for runs with R * 5 0.135. The fourth-order polynomial 

h(z,/z,) = 0.0399 - 3.92 In CT - 1.22&i G)’ 

- 0.254(1nc$ - 0.0748(1na)4 (50) 

is a good representation of my model results for 0.35 I 0 I 10.0. The figure also shows 
Brutsaert’s (1975b) prediction, 

zs/zo = exp[ - k(13.6~“~ - 13.5)] , (51) 
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Fig. 6. The matching of interfacial and inertial sublayer profiles of temperature (a = 0.71) and water vapor 
(u = 0.63) over an aerodynamically smooth surface. 

and von Kkrmarr’s (Goldstein, 1965, p. 657; Monin and Yaglom, 1971, p. 342) 

z,/z, = exp( - 5k{(o - 1) + ln[ 1 + 0.83(0 - 1)]}) . (52) 

The three models are so close that, with the scatter in the experimental data and their 
sparseness, it is impossible to decide which is the best predictor of z,/z,,. Brutsaert’s 
relation is the simplest computationally, but mine probably has the best physical basis. 
As we discussed, Brutsaert used a form for the distribution function eS that is 
unsupported by wind tunnel observations over smooth surfaces. And von Karmkn had 
to assume two matching heights: one at the top of the molecular sublayer and another 
at the base of the logarithmic layer. In contrast, my model yields the matching height 
as a function of 0 (Figure 5). 

In Figure 7 all three models predict zS/zo 3~ 1 for cr = 1. This is compatible with the 
Reynolds analogy -that over an aerodynamically smooth surface, where the roughness 
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Fig. 7. Current model predictions for an aerodynamically smooth surface compared with measured scalar 
roughness lengths for water vapor, thorium-B, and heat and with models by Brutsaert (1975b) and von 

Karman (Goldstein, 1965). 

elements cannot transfer momentum through pressure forces, the transfers must be 
identical for momentum and for a scalar contaminant with o = 1. Von KArmAn 
(Goldstein, 1965, p. 657) explicitly assumed the validity of the Reynolds analogy and 
thus forced his model to predict zS/zo = 1 at ~7 = 1. While neither Brutsaert (1975a, b) 
nor I made this assumption, his model predicts zS/zo = 0.96 at d = 1, and mine predicts 
zs/zo = 1.04. 
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4. Scalar Transfer Coefficients 

With the results of the last two sections, we can specify q-/z0 and zp/zO over snow or 
sea ice for all R * (Figure 8). Since temperatures will be 0 “C or less, the Prandtl number 
(v/D) is 0.71 and the Schmidt number (v/D,) is 0.63, with values for the molecular 
diffusivity of water vapor, D,, taken from Pruppacher and Klett (1978, p. 413). In R *, 
v is evaluated at - 5 “C. Because the model predicts z,/ze only over aerodynamically 
smooth and rough surfaces, to obtain zJzO values in the transition region, I did a log-log 
interpolation between model results at R * = 0.135 and R * = 2.5. 

16’ 7 

3 
20 - 

ICF- 
Smooth Transition 

Temperoture (Pr=07 

Fig. 8. Model predictions of zT/zo and zQ/zO over snow and sea ice. 

Figure 8 shows that zp is slightly larger than zT at all roughness Reynolds numbers. 
As Figures 3, 4, and 7 imply, this is strictly an effect of the difference in molecular 
diffusivities. Both zT and zQ are usually less than z, ; zT/zO and zQ/zO become less than 
one in the transition region and decrease monotonically in the aerodynamically rough 
region. Thus, zT and zQ are virtually always less than z,, in natural flows. 
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Several recent models predicted scalar transfer over aerodynamically rough surfaces. 
The model by Garratt and Hicks (1973) -which is just the empirical equation that Owen 
and Thomson (1963) derived - predicts z,/ze values generally five times larger than my 
model. The predictions of z,/z,, by Liu et al. (1979), which admittedly are for a water 
surface, are almost an order of magnitude smaller than mine. Brutsaert’s (1975b) model 
predicts z,/zO values smaller than mine for R * < 20 but values fairly close to mine for 
larger R *. 

For facilitating computer modeling, I have fitted the model results in Figure 8 with 
polynomials of the form 

ln(zJz,,) = b, + b, lnR, + b2(lnR,)‘. 

Table I lists the coefficients for smooth, transition, and rough surfaces. 

TABLE I 

Values of the coefficients in the polynomials, Equation (53), that predict 2,/z, 
for temperature (a = 0.71) and water vapor (a = 0.63) 

R, IO.135 0.135 c R, < 2.5 2.5 I R, I 1000 

Temperature 

bo 1.250 0.149 0.317 
b, - - 0.550 - 0.565 
b, - - 0.183 

Water vapor 

bo 1.610 0.351 0.396 
h - - 0.628 -0.512 
b, - - 0.180 

(53) 

As (11) and (12) show, if we know z,/z,, zQ/z,, and CD, we can find C, and C,. 
The model for CD presented by Banke et al. (1980) synthesizes a collection of CD values 
measured over various types of sea ice in the Beaufort Sea and in Robeson Channel in 
the Canadian Archipelago. Their empirical result, 

lo3 CD = 1.10 + 0.072(, (54) 

parameterizes the drag coefficient in terms of the r.m.s. surface roughness 5 in 
centimetres. Banke et al. (1980) found 5 by using a leveling rod to measure the surface 
elevation at l-m intervals for several hundred metres upwind of their instruments. 
Integrating the power spectrum of these height data over wavelengths less than 13 m 
yielded 5’. Notice that through (lo), < has a one-to-one relationship with z,. The 
z, values reported by Schmidt (1982) for blowing snow, those summarized by 
Chamberlain (1983) for drifting snow and sand, and those implicit in the CD measure- 
ments over snow by Kondo and Yamazawa (1986) are generally in the range reported 
by Banke et al. (1980); hence, I assume that (54) is a valid model for snow fields, too. 
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Kind (1976) and Chamberlain (1983) suggested that roughness lengths for snow and 
sand obey Charnock’s (1955) relation, 

zo = Bu2,k (55) 

where g is the acceleration of gravity and /I is a dimensionless constant with value 
0.010-0.016. Through (lo), (55) would yield CD. But because (54) parameterizes the 
form drag, which is an important effect over sea ice, I prefer (54) to (55). 

The routine for estimating C, and C, is first to select a < value; this value then defines 
CD from (54). CD, in turn, has a one-to-one relationship with z. through (10). Finally, 
we compute R * from 

R * = U,oC~‘2zo/v, (56) 

where U,, is the wind speed at 10 m. Substituting R * into (53), we use the resulting 
zT/zo and ze/zo values to compute C, and C, for a 10-m reference height from (11) and 
(12). Figures 9 and 10 show C, and C, as functions of 5 and U,,. Remember again, 
C,, C,, and C, are the values at neutral stability. 

According to Figures 9 and 10, the predicted C, value is always l-3% larger than 
C,. And except for very low wind speed, when the surface is aerodynamically smooth 
or in transition, both are smaller than CD. Both C, and C, are generally between 

2.4 I I I I I 

l O<_Ea2 
- 16 

2.2L o4sEa8 - 

A B<ES16 

2.0- A16CC 

IO3 c, ---8 

O.Bo I I I I I 
5 IO 15 20 25 30 

UIO(m/s) 

Fig. 9. Model predictions of C, over snow or sea ice as a function of the r.m.s. surface roughness (in 
centimetres) and the 10-m wind speed U,,. The arrows on the right show CD for the indicated r value. The 

data points are from measurements by Kondo and Yamazawa (1986). 
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Fig. 10. Model predictions of C, over snow or sea ice as a function of the r.m.s. surface roughness (in 
centimetres) and the 10-m wind speed U,,,. The arrows on the right show CD for the indicated <value. 

1.0 x 10d3 and 1.5 x 10e3. Onlyovertheroughest surfaces-and then only atlowwind 
speeds - are C, and C, larger than 1.5 x 10 - 3. C, and C, go below 1.0 x 10 - 3 only 
at unusually high wind speeds. The model predictions are therefore largely incompatible 
with the scalar transfer coefficients reported by Hicks and Martin (1972) and Thorpe 
et al. (1973). For wind speeds of about 3 m s - ‘, Hicks and Martin (1972) found average 
values of C, and C, over snow-covered Lake Mendota to be 0.9 x 10 - 3 and 
2.5 x lo- 3, respectively. Over ice in the Beaufort Sea, Thorpe et al. (1973) found 
averages of C, = 1.2 x 10W3 and C, = 0.55 x 10m3 for winds ranging from 5 to 
10 m s- r. Only the C, measurement by Thorpe et al. (1973) agrees with theoretical 
predictions. 

The form of the C, and C, functions in Figures 9 and 10 is different from that 
predicted by Kondo (1975) and by Liu et al. (1979) for C, and C, over the ocean. 
According to Figures 9 and 10, C, and C, are monotonically decreasing functions of 
wind speed, except at very low speeds over smooth surfaces where they are constant. 
Kondo (1975) predicted that over the ocean C, and C, have minimums at about 
2 m s- ’ and then increase gradually as the wind speed increases. Liu et al. (1979) 
predicted that C, and C, have local minimums at roughly 2 m s - l, local maximums 
at about 5 m s - r, then decrease slowly for increasing wind speeds. The basic reason 
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for the differences between my model and these is that over the ocean, CD has a 
wind-speed dependence. No such wind-speed dependence has been established for the 
drag coefficient over snow or sea ice. 

Figure 9 also shows C, values derived from the measurements reported by Kondo 
and Yamazawa (1986). Because they reported bulk transfer coefficients referenced to 
1 m, I had to obtain their raw data (J. Kondo, 1986, personal communication) to 
compute neutral-stability CD and C, values referenced to 10 m. Also, the roughness 
parameter that they reported reflected the microscale roughness; they determined it by 
measuring the snow-surface elevation at centimetre intervals for several metres. It, thus, 
differs from the macroscale roughness [ that I use in the model. To associate a 5 value 
with each of their C, values, I therefore converted each CD value to its implicit 5 value 
using (54). This, of course, does not yield very accurate 5 values but, at least, serves to 
separate the C, values according to relative roughness. 

Although Kondo and Yamazawa (1986) measured too few C, values to give the 
model a thorough test, the predicted C, values in Figure 9 agree with their data. Only 
one of their measurements falls outside the range of C, values predicted, and only one 
falls inside the range when it should be outside (5 > 16 cm). Though the 5 values 
assigned to the measured C, values may not be very accurate, the measured C, values 
do generally have the same trend with surface roughness as the predicted values. 
Consequently, the data of Kondo and Yamazawa (1986) tend to confirm that my model 
correctly predicts the magnitude of the neutral-stability C, value and its dependence on 
wind speed and surface roughness. 

Measuring C, and C, over natural snow and sea ice surfaces is extremely dilhcult. 
First, U, must be measured, either by measuring the vertical velocity profile or by 
measuring r directly. Next, t * and q* must be measured - again, either by measuring 
the vertical profiles of temperature and water vapor or by measuring H, and HL directly. 
These are necessary not only for finding C, and C, but also for making stability 
corrections. Last, and probably most important, is the measurement of T, and Q,. Since 
T, - T, and Q, - Q,. are rarely large over frozen surfaces, the To and Q, measurements 
must be precise. But because the surface is ill-defined, simply deciding what level over 
the snow corresponds to To and Q, is a problem; finding instruments capable of 
measuring To and Q, without disturbing the integrity of the surface is another. 
Consequently, the most careful flux measurements are of little value for specifying C, 
and C, if To and Q, are not measured as carefully. Andreas (1986) discussed this 
problem of measuring snow-surface temperature further and offered a possible solution. 

5. Discussion 

I have based my model on wind tunnel data collected over various solid surfaces. Snow, 
however, is a porous medium, a mixture of ice and air saturated with water vapor. If 
somehow that air is expelled from the snow, it could contribute to the surface sensible 
and latent heat fluxes in ways that I have not modeled. Water percolating down through 
the snow as a result of surface melting is the most likely way to expel air from a snow 
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pack. Colbeck (1976) developed a theoretical model with which we can estimate the 
sensible and latent heat fluxes accompanying this percolation. 

As snow melts near the surface, liquid water percolates downward as a wetting front 
with velocity u. The volume (V) of air expelled from the snow per unit time and per unit 
surface area is thus 

dV 
- = u(t.l, - ei). 
dt 

(57) 

Here t’$ is the irreducible water content of the snow, the water held in the menisci between 
the snow grains; and 0, is the maximum amount of water that freely draining snow can 
hold. 8 is dimensionless, being the volume of water per unit volume of snow. 

0, - l$ is largest in dry snow, since t$ is zero, by definition. But because the velocity 
of the wetting front is much higher in ripe snow than in dry snow (Colbeck, 1976), d V/dt 
will be largest for ripe snow. Colbeck (1976) showed that for ripe snow, the maximum 
velocity of the wetting front is 

u = aksfj-3(1 - Oi)-l(Oi + em@ + e,‘), (58) 

where a ( = 5.47 x lo6 m- ’ s- ‘) is a theoretical constant, k, ( = 2.0 x lop9 m’) is the 
intrinsic permeability of the snow (Colbeck, 1976; Colbeck and Anderson, 1982), 
$J = (1 - p,/p,) is the porosity of the snow, and p, and pi are the densities of snow and 
ice. With typical values for $, e,, and @of 0.7,O. 1, and 0.03, respectively (S. C. Colbeck, 
1985, personal communication), v is 4.6 x lop4 m s- ’ or 1.6 m hr- ‘. 

Using this result in (57) yields d V/dt = 3.2 x 10 - 5 m s - i (m’ of air expelled per m2 
of surface per second). Melt water must form at the surface at a like rate; this would 
thus require a surface energy source of 10700 W m - 2 ! Because this flux is at least 
30 times larger than we would expect for the combined radiative and turbulent fluxes 
at the surface of a snow cover on a sunny day, it is unlikely that d V/dt will ever exceed 
1 x 10e6 m s-‘. Sincesaturatedairato “Ccontains4.84 x 10e3 kgmP3watervapor, 
the maximum latent heat flux associated with this rate of air expulsion is 0.01 W mm2. 
Similarly, the sensible heat flux resulting from the expulsion of this air is 
0.001 AT W m- 2, where AT is the snow-air temperature difference in ‘C. 

Since a AT of 10 ’ C would be an uncommonly large snow-air temperature difference, 
both of these percolation fluxes would be inseparable from the noise in any measurement 
of the turbulent surface fluxes. Therefore, although snow is porous, the air and water 
vapor within it exchange with the free air so slowly that, for the purposes of turbulent 
heat exchange, snow behaves as a solid surface. Consequently, the data collected over 
solid surfaces that I have used to tune my model should be representative of a snow 
cover with similar surface roughness. 

6. Conclusions 

I have modeled the transfer of the passive scalar contaminants temperature and water 
vapor over aerodynamically rough and smooth snow and sea ice. The basis of the model 
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is a smooth matching of interfacial and inertial sublayer profiles. The inertial sublayer 
profile has the usual semi-logarithmic form; the interfacial sublayer profiles over smooth 
and rough surfaces derive from a turbulent surface-renewal model. This, evidently, is 
the first such derivation of the interfacial sublayer profile for a passive scalar over an 
aerodynamically smooth surface. 

The model yields values of zT/zO and zQ/z, as functions of the roughness Reynolds 
number. Using these values and the empirical model for the drag coefficient over sea ice 
given by Banke et al. (1980), I predict the 10-m bulk transfer coefficients for sensible 
(C,) and latent (C,) heat at neutral stability over snow and sea ice. These depend on 
the wind speed and on a surface roughness parameter. C, is l-3 % larger than C, ; at 
winds speeds greater than 3 m s - ‘, both are virtually always between 1.0 x 10 - 3 and 
1.5 x 10 - 3. Only at low wind speeds - which usually do not persist - and over very 
rough surfaces are C, and C, larger than 1.5 x 10 - 3. 
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