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ABSTRACT

Often there is a need to consider spatial weighting in methods for finding spatial patterns in climate data.
The focus of this paper is on techniques that maximize variance, such as empirical orthogonal functions
(EOFs). A weighting matrix is introduced into a generalized framework for dealing with spatial weighting.
One basic principal in the design of the weighting matrix is that the resulting spatial patterns are indepen-
dent of the grid used to represent the data. A weighting matrix can also be used for other purposes, such
as to compensate for the neglect of unrepresented subgrid-scale variance or, in the form of a prewhitening
filter, to maximize the signal-to-noise ratio of EOFs. The new methodology is applicable to other types
of climate pattern analysis, such as extended EOF analysis and maximum covariance analysis. The increas-
ing availability of large datasets of three-dimensional gridded variables (e.g., reanalysis products and model
output) raises special issues for data-reduction methods such as EOFs. Fast, memory-efficient methods are
required in order to extract leading EOFs from such large datasets. This study proposes one such approach
based on a simple iteration of successive projections of the data onto time series and spatial maps. It is also
demonstrated that spatial weighting can be combined with the iterative methods. Throughout the paper,
multivariate statistics notation is used, simplifying implementation as matrix commands in high-level com-
puting languages.

1. Introduction

The analysis of spatial patterns in geophysical data is
performed with a wide variety of techniques, including
methods based on empirical orthogonal functions
(EOFs; e.g., von Storch and Zwiers 1999; Jolliffe 2002;
Bretherton 2003; Hannachi et al. 2006, 2007; Van den
Dool 2007), empirical normal modes (Brunet 1994;
Brunet and Vautard 1996), methods that find coupled
patterns between datasets (e.g., maximum covariance
analysis, canonical correlation analysis, combined prin-
cipal component analysis; see von Storch and Zwiers
1999), methods that find similar patterns, such as clus-
ter analysis (e.g., Cheng and Wallace 1993; Wallace et
al. 1993a) and self-organized maps (Hewitson and
Crane 2002; Reusch et al. 2007). With any of these
methods, the use of spatial weighting may be an impor-
tant issue for several reasons.

One reason to use spatial weighting is that spatial
patterns should be invariant to how one chooses the
grid locations, since one is aiming to find properties of
the continuous spatial field (e.g., ‘‘intrinsic EOFs’’;
North et al. 1982; Stephenson 1997). Spatial weighting
can be used to compensate for unequal distribution of
grid points. Weighting may be desirable for other pur-
poses, such as to emphasize (or mask) certain spatial
regions, to account for variations in error covariances,
to calculate patterns with more than one variable mea-
sured across the spatial domain (e.g., extended EOF
analysis), or to equalize the variance at every grid point
(e.g., EOFs based on the correlation matrix instead of
the covariance matrix). Weighting may also be used to
compensate for small-scale variance that is not repre-
sented by the gridded data matrix. It may also necessary
to apply weighting to find EOFs of quantities such as
zonally averaged angular momentum, derived from the
zonal-mean zonal wind field (e.g., Baldwin and Tung
1994). Weighting may also take the form of a prewhit-
ening filter (Allen and Smith 1997; Venzke et al. 1999;
Chang et al. 2000) in which the data matrix is premul-
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tiplied by a filter (weighting matrix) that is determined
by the noise covariance matrix.
In this paper we adopt a general approach to spatial

weighting of geophysical fields. We use EOF analysis as
an example to introduce a generalized weighting ma-
trix. We show that it is possible to include the weighting
matrix in the EOF calculation, without premultiplying
the data by the square roots of the weights, as was done
by North et al. (1982). Our results are applicable to a
wide variety of similar techniques—in general any tech-
niques that partition variance.
It is often desirable to perform EOF analysis on

large, possibly 3D, spatiotemporal datasets (e.g., Haw-
kins and Sutton 2007). Standard EOF techniques can
become impractical for large data matrices. Efficient
techniques such as the power method can be used to
find the leading EOFs (Golub and Van Loan 1983; Jol-
liffe 2002 for a review; Van den Dool 2007) but typically
involve the explicit calculation of the whole covariance
matrix, which can make even these techniques imprac-
tical. It becomes necessary to have EOF methods that
can rapidly find the leading EOFs for such datasets
while allowing for arbitrary spatial weighting.
This paper addresses these issues by 1) proposing a

simple iterative scheme suitable for finding EOFs in
large datasets, and 2) mathematically formulating the
EOF problem for arbitrary weighting schemes. The it-
erative method is applicable to any of the EOF-based
techniques and uses the data matrix directly. We dem-
onstrate that the convergence properties of the iterative
method are the same as those of the power method
(Golub and Van Loan 1983).
The outline of the paper is as follows. Section 2 in-

troduces the nomenclature and fundamentals of EOFs
in standard matrix notation. Section 3 discusses spatial
weighting in EOF analysis; in section 3a we introduce a
weighting matrix, and in section 3b we discuss how to
deal with subgrid-scale variance. Section 3c presents a
derivation of a generalized weighting metric, which can
be easily transformed away by a change of variables
involving multiplying the data by the square root of the
weighting metric. Section 4a discusses in general how to
‘‘project’’ data onto time series and spatial patterns. We
then show, in section 4b, how an iterative projection
method can be combined with spatial weighting to ef-
ficiently calculate the leading EOF. In section 5 we
provide examples of including weighting matrices in
EOF analysis.

2. Nomenclature and approach to EOF analysis

We begin by considering a field, such as pressure or
temperature that is a continuous function of space and
time. We assume that the continuous field is approxi-

mated by sampling at regular time intervals onto some
spatial grid, which may or may not be regular. The data
are organized in an ðn 3 pÞ matrix, X 5 ½x1; x2; . . . ;
xn$

T, containing n observations of a variable xt defined
at p spatial points. The p spatial points could be em-
bedded in one, two, or three spatial dimensions. The n
observations could be of the same field made at differ-
ent times or n observations of different images (e.g.,
images of human faces; Craw and Cameron 1992). For
the purposes of this paper we will assume, without loss
of generality, that we are dealing with p spatial obser-
vations at n regularly spaced times.
We also assume the variables in X (the time series, or

columns) are anomalies that have been obtained by
centering the original variables by removing the respec-
tive time means at each location. The means of each
time series (i.e., the columns of X) are therefore iden-
tically zero. Because the variables are centered, the
ðp 3 pÞ sample covariance matrix is given by the matrix
product S 5 XTX=ðn% 1Þ . Here it is conventional to
use n 2 1 (instead of n) when the covariance is com-
puted from a sample. The total variance is the sum of
the variances at each of the grid points (the diagonal
elements of S) and so is given by the trace of S, Tr(S).
EOF analysis decomposes a data matrix into a series

of data-based orthogonal functions, which are defined
so that a minimal number of EOFs are needed to re-
construct the variation within the original data matrix.
EOF analysis can be understood in terms of spatial
patterns (EOFs) and their associated time series (often
called principal components). The data matrix can be
written as a sum of the products of the EOFs e1; e2; . . .½ $
and their associated time series y1; y2; . . .½ $:

X5!
r

i51
yie

T
i ; ð2:1Þ

where r is the rank of X, which is never greater than the
minimum of n and p. The EOFs e1; e2; . . .½ $ are chosen
so as to be orthonormal (eTi ej 5 1 for i 5 j and 0 oth-
erwise) and successively maximize the variance in the
corresponding time series y1; y2; . . .½ $. Here eT1Se1 is
maximal and each successive EOF component accounts
for the greatest possible fraction of the remaining vari-
ance. The EOF time series can be shown to be uncor-
related with one another, but this does not necessarily
mean that they are independent. For example, a pair of
EOFs may describe a propagating pattern in a data
matrix [e.g., the quasi-biennial oscillation (QBO), as
shown by Wallace et al. (1993b)].

3. Spatial weighting in EOF analysis

One common reason to weight in EOF analysis is to
compensate for grid spacing in the data matrix, for ex-
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ample to compensate for converging meridians on a
latitude–longitude grid. But there are several other rea-
sons to consider weights in EOF analysis. It may be
necessary to create a metric of some integral quantity of
interest, such as forming angular momentum from
zonal wind data or weighting atmospheric data in the
vertical by inverse pressure or by height. It may be
desirable to apply different weights to each variable
when several variables are included in the analysis. In
some cases one may wish to emphasize or de-emphasize
certain geographic regions or data levels. Weighting
may be used to correct for spatially inhomogeneous
data variances or error covariances. EOF analysis is
often done using correlations rather than covariances,
which corresponds to weighting anomalies by the recip-
rocal of their respective standard deviations.
As discussed in North et al. (1982), there is typically

a finite number of sometimes irregularly spaced grid
points in a domain. We wish to find what North et al.
termed the ‘‘intrinsic EOFs,’’ which are independent of
the data grid. The concept of intrinsic patterns, inde-
pendent of the grid, can be applied more broadly to any
type of climate pattern analysis. To do this we must find
an appropriate weighting that is invariant to the choice
of grid spacing.
We will use EOF analysis as an example, but the

resulting weighting methods are broadly applicable to
all variants of EOF methods (e.g., empirical orthogonal
teleconnections; Van den Dool et al. 2000). This
weighting method is also applicable to maximum co-
variance analysis (MCA) because MCA with identical
input fields finds the EOFs. For any of these methods,
the weighting technique must produce the same pat-
terns and time series as would result from regridding
the data onto an equal-area grid.
Despite all these reasons, the subject of how to

weight EOFs has received little formal attention in the
published scientific literature. This section will attempt
to address this deficit by showing how EOF analysis can
be generalized to include arbitrary weighting metrics.

a. Weighting metric

The generalization of the EOF problem to continu-
ous (Karhunen–Loève) functions was discussed by
North et al. (1982). They reasoned that EOFs derived
from an approximation to the continuous field, on a
finite set of grid points, should approximate those
based on the continuous functions, and should there-
fore be independent of the particular grid chosen. Our
approach is similar in that we begin by considering a
continuous anomaly field.
It is important to note that EOF methods partition

the total variance of the data matrix, which is a sum of

squared anomalies from the mean. For the purpose of
introducing a weighting matrix, it is sufficient to con-
sider a continuous anomaly field x at a single time, such
as sea level pressure over the Northern Hemisphere.
The area integral of x2 would correspond to a summa-
tion of squared gridpoint values. If x is approximated
on a series of p grid points, then the area integral of the
squared continuous anomaly field x2 can be approxi-
mated by the quadratic sum of anomaly values at the
grid points i. If the grid is uniform, and therefore
weighting is not needed,

ð

A
x2 da ’!

p

i51
x2i 5 xTx: ð3:1Þ

To accommodate the most general types of weighting,
we introduce the ðp 3 pÞ weighting matrix W:

ð

A
x2 da ’!

p

i51
!
p

j51
xiWijxj 5 xTWx: ð3:2Þ

We define the weighting matrix in a general way so that
it can be used to area weight the summation, or to
weight or filter EOFs in other circumstances (described
below). It is a generalization of the area-weighting con-
cept discussed in North et al. (1982), who defined a
p-vector of weights proportional to the gridbox area.
The weighting matrix can always be written symmet-

ricallyWij 5 Wji without any loss of generality. Since the
integral of a squared quantity is nonnegative, it is desir-
able that xTWx $ 0 and so the weighting matrix W then
defines a metric jjxjj2W 5 xTWx in the p-dimensional
space of gridpoint variables (Strang 2003).
It is common practice to assume that the area integral

can be approximated by the simple sum of squared
anomalies at each grid point—in other words, the mid-
point rule for numerical integration. In the simplest
case of uniform grid spacing, W is the identity matrix,
with elements Wij 5 dij, where dij 5 1 only if i5 j and
is 0 otherwise. For nonuniform grid spacing, it is com-
mon to modify this by assuming a diagonal weighting
matrix with Wij 5 aidij, where ai is the area associated
with the ith grid point. This corresponds to the equal-
area weighting discussed by North et al. (1982).
Defining W as a ð p 3 pÞ matrix allows for the inclu-

sion of off-diagonal elements. The W has the same di-
mensions as the covariance matrix and so allows for the
weighting to vary not just by grid position but to vary
across the covariance matrix. In some cases more accu-
rate estimates of the area integral can be obtained by
using sophisticated numerical integration together with
careful spatial smoothing that takes account of the spa-
tial correlations in x2 (Kagan et al. 1997). The result of
such approaches can still be written in the form xTWx,
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where the effect of smoothing and spatial interpolation
is to induce off-diagonal elements in W. The effects of
spatially varying errors in x2 can also be taken into
account by including the inverse of an error covariance
matrix in W, as is done in optimal interpolation and
kriging (Kagan et al. 1997).
It is important to note that any metric W can always

be transformed away to Euclidean (uniform weighting)
by pretransforming the gridpoint variables to new grid-
point variables:

x ! x95W1=2x: ð3:3Þ

For diagonal metrics, such as the area-weighting metric,
W1=2 is simply the square root of the diagonal elements
of W. For nondiagonal metrics, W1=2 can be calculated
by using numerical methods such as the Cholesky de-
composition or the Denman–Beavers iterative method
(Higham 2008).
The generalized norm can then be written as a Eu-

clidean norm in the new variables:

xTWx5 ðW1=2xÞTðW1=2xÞ5 x9Tx9: ð3:4Þ

This is the reason for premultiplying anomalies by the
square root of the gridbox area, as suggested by North
et al. (1982). Alternatively, one can find transforma-
tions of gridpoint variables that can remove the metric,
for example, by interpolating x to a grid with equal
areas (or volumes).
Although the metric W was introduced in order to

compensate for unequal grid spacing, the concept can
be used in a variety of ways to weight or filter data in
EOF analysis. One example is to prewhiten the data in
signal-to-noise maximizing EOF analysis (Allen and
Smith 1997; Venzke et al. 1999; Chang et al. 2000). In
this case the data matrix is premultiplied by a filter (in
place of W1=2) that is completely determined by the
noise covariance matrix. If, for example, the analysis
was on a nonuniform grid, the filter matrix and W1=2

could be combined by multiplying the data matrix by
both and then performing the EOF analysis.
Another use of the weighting metric is to emphasize

(or de-emphasize) regions of the data matrix. This may
be desirable because of signal-to-noise ratio, to produce
uniform variance across the grid, or simply to eliminate
(mask) a region from the analysis. In all these cases,
onceW is defined, it is used in the same way in the EOF
analysis.

b. Choice of metric to account for subgrid-scale
variation

A continuous squared anomaly field x2 can be ap-
proximated on grid points, but doing so acts as a spatial

smoother. This reduction in variance may be small if
the decorrelation distance is large, but the reduction
can be significant if the field has large small-scale vari-
ance. The size of the grid spacing therefore affects the
total variance as well as the EOFs. This suggests that
EOFs should be calculated on the highest grid resolu-
tion available, if one wishes to include the effects of
small-scale variance. There may be instances in which it
may be desirable to calculate EOFs of large-scale vari-
ability [in analogy with EOFs of ‘‘low-frequency varia-
bility,’’ as in Thompson and Wallace (1998)]. For many
datasets the decorrelation distance may be highly vari-
able over different regions of the grid. If EOFs are
calculated on a variable grid (e.g., a latitude–longitude
grid), there are two reasons that weighting may be
necessary: first to compensate for the gridbox area and
second to compensate for unrepresented variance at
scales smaller than the grid.
Compensation for unrepresented variance can be

subtle, in that the coarseness of the grid affects how
much of the variance of the continuous field can be
represented by the grid. Some of the variance of the
continuous field is not represented by the gridpoint val-
ues. In effect, there is variation of the continuous field
within each grid box, so that the squares of the data
values are underrepresented if the data vary within a grid
box.
A continuous anomaly field x could vary within a grid

box because of the presence of spatial trends across grid
points and subgrid-scale random variations in x2 within
grid boxes. However, we can only estimate the area
integral of x2 using gridpoint values xi that are consid-
ered to be area averages of the field across the grid box.
By Reynolds averaging (Monin and Yaglom 1971), it
can be seen that the area integral of x2 across a grid box
exceeds the area weighting commonly used in climate
studies. If we integrate x2 over a single grid box,

ð

A
x2 da5 x2i ai 1

ð

A
ðx% xiÞ2 da: ð3:5Þ

The first term on the right of (3.5) represents the area
weighting discussed in section 3a. The second term rep-
resents variance at scales smaller than the grid box. If
the grid is fine enough so that the gridded values ac-
count for nearly all the variance, the second term is
small and area weighting ai would be a good approxi-
mation. If the grid is too coarse, the first term does not
adequately account for the total variance of the field.
To illustrate this effect, we consider a single North-

ern Hemisphere grid of the 40-yr European Centre for
Medium-Range Weather Forecasts (ECMWF) Re-
Analysis (ERA-40) geopotential (Uppala et al. 2005) at

15 JANUARY 2009 BALDWIN ET AL . 237



1000 hPa for 1 January 2001. The original resolution is
a 1.1258 latitude–longitude grid. Figure 1 examines the
ratio of ! ix2i ai at lower grid resolutions to ! ix2i ai using
the original 1.1258 grid. We use two methods for calcu-
lating reduced-resolution grid values: 1) interpolation
and 2) spatial averages over each grid box. Interpolated
values (solid black curve) in Fig. 1 illustrate that, as the
grid resolution is decreased, the mean grid variance is
decreased to ;95% at 58–68 and ;90% at 108. Gridbox
averaging (gray curve) tends to reduce local minima
and maxima in the grid (compared to interpolation) so
the falloff is somewhat steeper. Figure 1 illustrates that
;10%–20% of the ERA-40 1000-hPa geopotential
variance is at grid resolutions smaller than 108.
In principle, the most extreme case of small-scale

variance would be a random anomaly field with vari-
ance s2 and no spatial correlation between grid points.
The area integral would be equal to s2ai but would
have a squared gridbox average that scales as x2i 5 s2=ai
(the variance of a mean). In this special case, it would
be possible to compensate for the subgrid-scale vari-
ance by increasing the weighting factor to a2i rather than
ai (Folland 1988). Thus, the correct weighting factor for
any field would lie between ai and a2i , but for most data
fields (e.g., the geopotential used in Fig. 1), the factor
would be close to ai.
To further illustrate this effect, consider a uniformly

gridded data matrix in which the xi are uncorrelated
with each other and have unit variance. If half of the
grid is resampled with grid boxes twice as large, each
new gridpoint value would represent the average of two
original values (ai 5 2). The variance of the average of

two such uncorrelated times series is reduced from 1 to
0.5. Thus, a weighting factor of 2 would be necessary to
compensate for the gridbox area, and another factor of
2 would be needed to compensate for the reduced var-
iance in the resampled half of the grid, giving a2i 5 4 as
the correct weighting, as found by Folland (1988).
Defining a weighting matrix that compensates for un-

represented variance within grid boxes is possible, at
least in principle, and would depend on the decorrela-
tion scale and power spectrum of the data at length
scales smaller than the grid boxes. For grid spacing
smaller than the decorrelation scale of the field (e.g.,
sea level pressure on a grid much smaller than the syn-
optic scale), the correct metric would be Wij 5 aidij
(area weighting), whereas, for grid boxes containing
less coherent variations, the limit of Wij 5 a2

i
dij (weight-

ing by the square of the gridbox area) could be ap-
proached. The correct choice of metric would ensure
that the results of the EOF analysis would not be overly
dependent on the specific choice of grid.

c. Generalized EOF analysis

The time average of the numerical approximation to
the area integral can be written in terms of the sample
covariance as follows:

ð ð
x2 da5

ð ð
x2 da’

1

n
!
n

t51
xTt Wxt 5TrðWSÞ; ð3:6Þ

which defines the generalized total variance. The EOF
problem becomes one of finding spatial patterns that
maximize eTi WSei subject to the constraint eTi Wej 5 1
for i 5 j and 0 otherwise. By transforming to e9i 5
W1=2ei, it can be seen that the EOF solutions are the
eigenvectors of the generalized eigenvector equation
SWei 5 liei.
Several different approaches can be used to find the

generalized EOFs:

1) Solve the generalized eigenvector equation (SWei 5
liei) directly [e.g., using generalized solvers such as
the eig function in matrix laboratory (MATLAB)].

2) Transform out the metric by pretransforming the
original variables, find unweighted EOFs, and then
back transform the resulting EOFs. Pretransforming
maps the data matrix to X9 5 XW1=2 and the covari-
ance matrix to S9 5 ðW1=2ÞTSW1=2. It is necessary to
perform the inverse transformation e 5 W%1=2e9 to
obtain the generalized EOFs from the EOFs of the
transformed variables.

3) Use iterative projection methods that include W ex-
plicitly (section 4).

FIG. 1. Fractional change in Northern Hemisphere average vari-
ance of 1000-hPa geopotential on 1 Jan 2001. The full grid reso-
lution is 1.1258. The black curve shows the total variance at
coarser grid resolutions obtained by bilinear interpolation. The
gray curve is obtained by averaging over grid boxes.
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4. Projection methods for finding EOFs

a. Projections and EOFs

For any n-vector time series of centered anomalies y,
an associated p-vector spatial pattern e, can be ob-
tained by ‘‘projecting the data onto the time series,’’ as
follows:

e5
XTy

yTy
; ð4:1Þ

where yTy 5 ðn% 1Þs2y and sy is the sample standard
deviation of the time series. For example, X could be
monthly-mean Northern Hemisphere sea level pressure
data, and y could be an index of the North Atlantic
Oscillation (NAO). Equation (4.1) gives the spatial pat-
tern of the NAO. Note that when y 5 xi, the time series
at grid point i, ej 5 sji=sii is the covariance map at grid
point i.
Similarly, a time series y can be obtained from a

spatial pattern e by ‘‘projecting the data onto the spatial
pattern’’:

y5
Xe

eTe
: ð4:2Þ

The metric W does not affect the projection Eq. (4.1)
for obtaining a spatial pattern from a time series, but
Eq. (4.2) for obtaining an EOF time series from an
EOF requires weighting of both X and e by W1=2:

y5
XWe

eTWe
: ð4:3Þ

For example, a daily NAO index can be obtained from
the NAO spatial pattern and daily sea level pressure
anomalies (e.g., Baldwin et al. 2003) using (4.3). Com-
pensating for a latitude–longitude grid would require
the diagonal elements ofW to be cos u. Note that, if the
data matrix is pretransformed by multiplying by W1=2,
the resulting EOFs will also be transformed. To obtain
the EOFs for the original data matrix, either use (4.1)
or divide by W1=2.
Normalization between the spatial patterns and time

series is arbitrary, as long as the product yeT is pre-
served. If the spatial patterns are treated as dimensionless
weights, then eTWe=Tr Wð Þ 5 1. If the EOF time series
have unit variance, then yTy=ðn% 1Þ 5 1. If the EOFs
are normalized to have unit normalization, then
eTWe=½ð p% 1ÞTrðWÞ$ 5 1.

b. A simple iterative projection method for
calculating EOFs

Several numerical matrix algebra techniques, such as
eigenvector analysis and singular value decomposition

(SVD) can be used to obtain all the EOFs simulta-
neously (Jolliffe 2002). For large data grids, these meth-
ods can rapidly become computationally impractical.
Although the space and time dimensions in the data
matrix can be swapped (von Storch and Zwiers 1999)
even calculating the covariance matrix can be problem-
atic. One alternative is to use SVD directly on the data
matrix, rather than the covariance matrix, but the SVD
method is still computationally expensive for large data
matrices.
Rather than calculating all the EOFs, the first few

EOFs and EOF time series can be calculated using it-
erative techniques (e.g., Holmström 1963; Clint and
Jennings 1970; Jongman et al. 1995; Legendre and Le-
gendre 1998). One such technique, called the ‘‘power
method’’ (Jolliffe 2002), begins with an initial estimate
of the leading EOF, with the only requirement being
that the initial estimate has at least some projection
onto the leading EOF. The estimated EOF is repeat-
edly multiplied by the covariance matrix XTX and nor-
malized during each iteration:

ek11 5
XTXek

kXTXekk
: ð4:4Þ

The successive estimates converge to the leading EOF
as long as the initial estimate has at least minimal pro-
jection onto the leading EOF (Golub and Van Loan
1983, p. 209). The rate of convergence depends on the
ratio of the two leading eigenvectors. Thus, an arbitrary
initial guess at the EOF is sufficient in practice to ini-
tialize the procedure. The EOF time series is never
used explicitly, but it would be obtained using (4.2).
Once convergence is achieved, the projection of the
leading EOF (yeT) is subtracted from X, and the pro-
cedure is repeated to find the desired number of EOFs.
Here we describe another iterative method of finding

the leading EOF that involves successive application of
(4.1) and (4.3). We will show that this method is an
extension of the power method. The main advantages
are that this iterative procedure does not require the
calculation of the covariance matrix XXT, and it ac-
counts for the weighting matrix W. This method per-
forms the multiplication by XXT in two steps and so
retains the convergence properties of the power
method. The method consists of a simple iterative pro-
cedure using the projections (4.1) and (4.3), which al-
ternate between the EOF and its time series. By suc-
cessively multiplying by X and XT, we calculate both the
EOF and its time series (which was implicit in the
power method). Another method involving iteration
between a spatial pattern and a time series was pro-
posed by Clint and Jennings (1970). Van den Dool et al.
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(2000) used a similar approach, without weighting, to
find the leading EOF beginning from the leading em-
pirical orthogonal teleconnection (EOT) pattern. Itera-
tion between a time series and spatial pattern to calcu-
late the leading EOF was discovered independently by
G. Hegerl (2008, personal communication).
The method begins with an initial random guess time

series whose only requirement is that (as with the
power method) it must have a nonzero projection onto
the leading EOF time series. Let yk denote the kth
iteration of the first EOF time series. The data matrix is
then projected onto this time series to obtain a spatial
pattern, followed by projecting the data matrix onto
this spatial pattern to get a new time series. The process
is then iterated until the squared error between succes-
sive time series falls below a preset tolerance, which can
be small but must be greater than the machine preci-
sion:

ek11 5
XTyk
y T
k yk

and ð4:5Þ

yk11 5
XWek11

eTk11Wek11
: ð4:6Þ

Iteration continues until convergence, defined by kyk11%
ykk

2 , e, where e is a preset tolerance. The denomina-
tors in (4.5) and (4.6) are normalization factors. Substi-
tuting (4.6) into (4.5) demonstrates that this method is
equivalent to the power method. Once convergence is
achieved, the EOF multiplied by its time series is sub-
tracted from the data matrix X 5 X% yeT, as with the
power method, and the process is repeated to find the
next EOF. There is no advantage in transposing the
data matrix (switching time and space). After conver-
gence the EOF and its time series can be renormalized
in any way that preserves the product yeT.
The algorithm finds one EOF at a time, so it is ap-

propriate to use when only a small number of EOFs are
desired. If the eigenvalues of the leading modes are not
well separated, convergence will be slow (Golub and
Van Loan 1983, p. 209). Since this iterative approach
does not explicitly compute the covariance matrix, it
can therefore be used when X is a very large matrix.
The algorithm does not require significant memory be-
yond that needed for the data matrix, and the algorithm
would work even if the data matrix exceeds computer
memory. For example, we have used as a data matrix of
50 yr of daily Northern Hemisphere ERA-40 geopoten-
tial (dimensions 18 262 by 25 920). The calculation of
the leading EOFs was routine using the iterative algo-
rithm.

5. Example

The purpose of this section is to illustrate how to
create a weighting matrix and how different choices for
a weighting matrix affect the resulting EOF. It should
be emphasized that resulting EOFs may or may not
represent physical modes (e.g., Brunet and Vautard
1996; Ambaum et al. 2001; Jolliffe 2003). The strict or-
thogonality condition on EOFs is at the same time its
strength and its weakness. For example, the North At-
lantic Oscillation may be a more physical mode than
the similar EOF of the northern annular mode (Am-
baum et al. 2001). We consider the leading EOF of
Northern Hemisphere monthly-mean zonal-mean zonal
wind from 1000 to 54 hPa. The data are ERA-40 (Up-
pala et al. 2005) from 1958 to 2001 on a 1.1258 grid in
latitude and unequally spaced pressure levels. The di-
mensions are n 5 528 months and with 81 latitudes and
15 pressure levels, p 5 1215. To remove the annual
cycle and the long-term trend, we subtracted the aver-
age value for each calendar month and then regressed
out the long-term linear trend at each grid point. Figure
2 illustrates the variance x2 of the resulting anomalies.
The variance is largest in the stratosphere, both near
the equator, where the quasi-biennial oscillation domi-
nates (Baldwin et al. 2001), and at high latitudes where
month-to-month wintertime changes in zonal wind are
large.
This small dataset allows us to illustrate how to cre-

ate three different weighting matrices that varies in
both latitude and pressure. We choose W to be a di-
agonal matrix (one weighting value per grid point), so
the diagonal elements of W map to the grid points in
the latitude–height plane. To weight in both latitude
and pressure, we specify both a latitudinal weighting

FIG. 2. Variance of monthly-mean, ERA-40 Northern Hemi-
sphere deseasoned, detrended zonal-mean zonal wind, 1958–2001.
The contour intervals are 1, 2.5, 5, 10, 20, 40, 80 m2 s%2. The
highest level is 54.6 hPa (one of the ERA-40 assimilation model
levels). The data levels correspond to the ticks on the right axis.
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function and a vertical weighting function. Then W is
formed by multiplying these functions. Latitudinal
weighting of cos u compensates for the converging me-
ridians at higher latitudes. In the vertical, we choose
two different weightings. The first is proportional to the
difference in pressure (or mass) between the bottom
and top of the layer represented by each level. In the
first case, Wij 5 cos uiDpidij. The second case is propor-
tional to the difference in log pressure (approximately
physical height): Wij 5 ðcos uiDpidijÞ=pi. These weight-
ings are illustrated in Figs. 3a,b. As a third example, we
weight the zonal-mean wind to form a quantity propor-
tional to axial relative angular momentum by pressure
weighting in the vertical and cos2u weighting in latitude
(Fig. 3c). The global axial relative angular momentum
is given by (von Storch 2000)

Mr 5
pr3

4

ðp=2

%p=2

ðPs

0
ð!u cos2uÞ dp du; ð5:1Þ

where r is earth’s radius and Ps is surface pressure.
Relative angular momentum is therefore proportional
to !u cos2 u and Wij 5 cos2 uiDpidij. This weighting is il-
lustrated in Fig. 3c.
The magnitude of W does not affect the EOFs. The

weighting matrix can be multiplied by an arbitrary scal-
ing value without affecting the EOFs. The leading EOFs,
corresponding to the weightings in Fig. 3, are shown in
Fig. 4. The EOFs were obtained by iterative projections
and includeW explicitly in the projection used to find the
time series [Eqs. (4.5) and (4.6)]. The same result could
have been obtained by premultiplying byW1=2. However,
premultiplication by W1=2 would be problematic if any
of the gridpoint weights were zero, since the result
would then be dividing by W1=2. The use of Eq. (4.5) is
more robust, and can be used if some of the gridpoint
weights are zero. The log pressure–weighted EOF (Fig.
4a) captures the QBO, while the pressure-weighted
EOF is dominated by a north–south dipole. The angu-
lar momentum EOF (Fig. 4c) captures both features.
Although the domain shown in Fig. 4 is that used for
the EOF calculation, Eq. (4.1) could be used to extend
the plots in height or latitude, or to project a different
dataset onto the EOF time series.

6. Summary

We have developed a generalized technique for in-
cluding spatial weighting in EOF-type analyses. EOFs,
calculated on a set of (possibly irregular) spatial grid
points, should not depend on the grid resolution of
spacing. To achieve this goal, we introduce a general-
ized spatial weighting metric into EOF analysis and
show how to then find the resulting generalized EOFs.

If p is the spatial dimension of the data matrix, the
weighting matrix W is dimensioned p 3 p. Its applica-
tion is simple and straightforward, involving either pre-
transforming the data by multiplying by W1=2 or carry-
ing W through the EOF calculation.
Although the weighting matrix is developed in order

to compensate for an irregular grid, its potential appli-
cation is much broader. There are a variety of other

FIG. 3. Weighting functions corresponding to (a) vertical log-
(pressure) weighting and (b) vertical pressure weighting. The lati-
tudinal scaling is by cos u in (a) and (b). (c) Angular momentum
weighting with latitudinal scaling by cos2u. In all panels, the values
have been scaled by an arbitrary scaling factor for plotting. The
ticks on the right side of the diagrams show the data levels.

15 JANUARY 2009 BALDWIN ET AL . 241



reasons to spatially weight EOF analysis, including the
neglect of unrepresented subgrid-scale variance, mask-
ing or emphasizing certain regions, compensating for
error covariances, etc. In some cases, the weighting ma-
trix can play the role of a filter. For any of these weight-
ing/filtering strategies, the application to EOF analysis
is the same.
The weighting techniques are applicable to all vari-

ants of EOF analysis such as extended EOFs and maxi-

mum covariance analysis. All these techniques partition
the total variance of the data matrix into discrete modes.
The weighting techniques are developed for gridded

data that are equally spaced in time, but the same meth-
odology could be applied to the time domain if the
observation times are irregular. The results would be
nearly identical to interpolating to a grid that is evenly
spaced in time.
Fast, memory-efficient methods are required in order

to extract EOFs from large datasets. Often, only the
first few EOFs are needed, and with a large dataset it
can be computationally more efficient to directly calcu-
late the first few EOFs rather than use a standard
method that finds all the EOFs at once. This study
describes one such approach based on a simple itera-
tion of successive projections of the data onto time se-
ries and spatial maps. The method is initialized with a
random first guess of the EOF time series and consists
of alternately projecting the data matrix onto successive
estimates of the EOF and its time series. The technique
is a variant of the power method, which has well-
defined convergence properties.
The iterative technique works directly from the data

matrix (not the covariance matrix) and is suitable for
very large data matrices because the covariance matrix
is never directly calculated. The technique projects the
data onto successive estimates of the EOF spatial pattern
and EOF time series. A weighting matrix can be carried
through the calculation so that the data are not pre-
transformed by multiplying by the square root of appro-
priate weightingmatrices. A subroutine in InteractiveData
Language (IDL) that implements this method is available
from the authors or online (www.nwra.com/baldwin).
We argue that the original spatial resolution of the

data should be retained when performing any analysis
of patterns in geophysical data. Computational issues
may lead researchers to degrade the resolution of the
data (e.g., by retaining only every other grid point) to
make the calculation tractable (Wallace et al. 1992;
class notes on SVD and EOF analyses are available
online at http://jisao.washington.edu/wallace/). The de-
graded resolution reduces the total variance of the
field. Since the total variance of the field is reduced, the
percent of the variance associated with each EOF can
change, resulting in patterns that differ from those that
would have been calculated from the full data grid. This
could also change the order of the EOFs. Degrading the
resolution could therefore affect the determination of
whether or not empirically determined EOFs are sepa-
rate (North et al. 1982; Quadrelli et al. 2005).
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FIG. 4. Leading EOFs of zonal-mean zonal wind, calculated with
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(b) pressure weighting, and (c) angular momentum weighting.
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